• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.029 seconds

Analysis of Temperture Distribution in 2-D Power Transformer Using Hybrid Mesh Model (복합격자 생성기법을 이용한 전력용 변압기의 2차원 온도분포 해석)

  • Min, Kyung-Jo;Kim, Joong-Kyoung;Hahn, Sung-Chin;Joo, Soo-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.993-995
    • /
    • 2005
  • Recently, the efficiency of power transformer is improved as well as the size is becoming smaller. So, it is very important that temperature characteristics of the transformer should be estimated and predicted precisely. This paper deals with the temperature distribution of power transformer by simplified 2-D hybrid mesh model. The temperature distribution of model transformer was obtained by CFD algorithm considering natural convection. Heat sources are calculated first by magnetic field analysis based on F.E.M. and are usedas the input data for thermal field problem based on computational fluid dynamics(CFD) algorithm. The calculated temperature distribution of the simplified 2-D power transformer model shows good results in accuracy as well as in computing time.

  • PDF

The optimum Design of the Multi-flight Screw using Finite Element Analysis (다중날을 가진 스크류의 최적화 설계)

  • 최동열;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.248-256
    • /
    • 2001
  • Capacities of screw are pumping, steady flow of polymer melts, volumetric efficiency, steady volumetric throughout etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. Also the temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. by computation volumetric efficiency increases as rotating velocity increases, flight number increses, and decreases as friction coefficient increases. but volumetric throughout is different :s flight number increases with helix angle variability. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on thermo-mechanical characteristics of screw.

  • PDF

Wear Characteristics of Multi-Span Tube Due to Turbulence Excitation (다경간 전열관의 난류 여기에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.919-924
    • /
    • 2005
  • Fretting-wear caused by turbulence excitation for KSNP(Korea standard nuclear power plant) steam generator is investigated numerically. Secondary sides density and normal velocity are obtained by the thermal-hydraulic data of the steam generator. Because nonlinear finite element analysis is complex and time consuming, work rate is estimated by using linear analysis for simple straight 2-span tube. Wear volume and depth by using work rate calculation are estimated. Span length, secondary side fluid density and normal velocity are adopted to study the effects on the fretting-wear by turbulence excitation. When secondary sides density and normal velocity is increased, It turns out that secondary side density and normal gap velocity are very important paramater for fretting-wear phenomena of the steam generator.

  • PDF

Fabrication of micro carbon structures using laser-induced chemical vapor deposition and Raman spectroscopic analysis (레이저 국소증착에 의한 탄소 미세 구조물 제조 및 분광분석)

  • ;;J. Senthil Selvan
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.17-22
    • /
    • 2002
  • Characteristics of micro carbon structures fabricated with laser-induced chemical vapor deposition (LCVD) are investigated. An argon ion laser (λ=514.5nm) and ethylene gas were utilized as the energy source and precursor, respectively. The laser beam was focused onto a graphite substrate to produce carbon deposit through thermal decomposition of the precursor. Average growth rate of a carbon rod increased for increasing laser power and pressure. Micro carbon rods with good surface quality were obtained at near the threshold condition. Micro carbon rods with aspect ratio of about 100 and micro tubular structures were fabricated to demonstrate the possible application of this method to the fabrication of three-dimensional microstructures. Laser Raman spectroscopic analysis of the micro carbon structures revealed that the carbon rods are consisting of amorphous carbon.

  • PDF

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.

Quench Analysis in HTS Pancake Coil (고온 초전도체 팬케이크 코일의 퀜치 해석)

  • Park, C.S.;Ahn, T.K.;Park, K.W.;Kim, D.H.;Cha, G.S.;Seo, J.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.6-9
    • /
    • 2009
  • The thermal characteristics of quench propagation is a crucial problem for the stability of the superconductor. The objective of this study is to simulate the quench propagation with the variation of disturbance energy in Bi-2223/Ag HTS pancake coil. In this analysis, the temperature-time trace of a point away from heater was calculated under conditions of different quench energy. The critical disturbance energy between quench propagation and quench recovering was calculated, In addition, the minimum quench energy with different transport currents was obtained through the present simulation. These results are significant to the application of HTS.

Impact of the geometric properties of intracranial vascular bifurcation and the mechanism of aneurysm occurrence and rupture

  • Liu, Jun;Zhang, Qingyun;Chen, Hua
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.379-391
    • /
    • 2022
  • One factor that can heighten the risk of the rapture intracranial aneurysm (IA) is bifurcations, which can cause the IA to evaluate. This study presents the effect of geometric of intracranial vascular on the bifurcation analysis of the aneurysm occurrence. The aneurysm mechanism is mathematically modeled based on the nano pipe structures under the thermal stresses, and the impact of the aneurysm geometric on the stability and bifurcation points is analyzed. Because of the dimension of these structures, the classical theories could not predict their behavior perfectly, so the nonclassical and nonlocal theories are required for the mechanical modeling of the aneurysm. The presented results show that the bifurcation point of the aneurysm mechanism is dependent on the environment temperature, and the temperature change plays an essential role in the stability of these structures.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

A Study on the Creep Characteristics according to Groove Shape of T-Welded Joint (T-Joint 용접부의 Groove형상별 크리프 특성에 관한 연구)

  • Bang, Han-Seo;Kim, Jong-Myeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.68-76
    • /
    • 1999
  • The welding residual stresses produced by the welding frequently caused a crack and promote stress corrosion etc. in HAZ(heat affected zone) contained with external load and weakness of material. Therefore, PWHT(post welding heat treatment) is widely used to reduce wekdubg residuss, to relax hardening of heat affected zone and to get rid of impurity. In this study, in order to define the effect on shappes of T-welded joint, during the post welding heat treatment, we have carried out numerical analyses on the several test pieces by using computer program which was based on thermal-elasto-plato-plasto-creep theories for the study. The main results obtained form this study is as follows: 1) The mechanical difference for change the thickness of plate and groove angle did not appear. 2) The distribution modes of welding residual stresses are same on the all test specimens during the post welding heat treatment. 3) In a mecharical point of view, minimum groove groove angle($40^{circ}$) is more suitable than maximum groove angle($60^{circ}$). 4) Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

CORIUM BEHAVIOR IN THE LOWER PLENUM OF THE REACTOR VESSEL UNDER IVR-ERVC CONDITION: TECHNICAL ISSUES

  • Park, Rae-Joon;Kang, Kyoung-Ho;Hong, Seong-Wan;Kim, Sang-Baik;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.237-248
    • /
    • 2012
  • Corium behavior in the lower plenum of the reactor vessel during a severe accident is very important, as this affects a failure mechanism of the lower head vessel and a thermal load to the outer reactor vessel under the IVR-ERVC (In-Vessel corium Retention through External Reactor Vessel Cooling) condition. This paper discusses the state of the art and technical issues on corium behavior in the lower plenum, such as initial corium pool formation characteristics and its transient behavior, natural convection heat transfer in various geometries, natural convection heat transfer with a phase change of melting and solidification, and corium interaction with a lower head vessel including penetrations of the ICI (In-Core Instrumentation) nozzle are discussed. It is recommended that more detailed analysis and experiments are necessary to solve the uncertainties of corium behavior in the lower plenum of the reactor vessel.