• Title/Summary/Keyword: Thermal aging

Search Result 620, Processing Time 0.03 seconds

The Study about the Preservation of the Paper of Mulberry (상지(桑紙)의 보존성(保存性)에 관한 연구)

  • Jung, Sun-Young
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.4 no.2
    • /
    • pp.1-22
    • /
    • 2004
  • This study is about the paper of Mulberry(桑紙). The paper which was usually applied to the ancient bookpaper and documents. But there is a rare record about it today. So the paper was made from the Mulberry(뽕나무) bast fiber using traditional handcraft method. and Paper Mulberry(닥나무) by traditional method. And tested by physical and optical methods in comparisons with Paper Mulberry(닥나무). The ratio of length/width of Mulberry fiber was 475, and its lignin content was lower than the Paper Mulberry. The Mulberry paper had similar forming properties and physical strength to the Paper Mulberry fiber. Therefore, the Mulberry fiber seem to be a good paper fiber for traditional paper. For the aging test, in the thermal acceleration treatment for 72 hours and 144 hours at the temperature of $105^{\circ}C$ incubator, the Mulberry paper was more deteriorative than the Paper Mulberry. In the ultraviolet acceleration treatment for 100 hours and 200 hours the Mulberry paper was less interior to the Paper Mullberry, in the increase of treatment time. And the Mulberry paper was approved to be a good traditional paper in appearance. Furthumore, in considing the sample of bred Mulberry species grown today, its paper is thought to be superio to the paper of Paper Mulberry in symptom of senility in natural ultraviolet light.

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$ Structural Ceramics : II. Mechanical Properties and Thermal Stability of Sintered Body ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : II. 소결체의 기계적 성질 및 열적 안정성)

  • 오혁상;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 1997
  • ZrO2 powders stabilized with Y2O3 and CeO2 of various compositions were prepared by the coprecipitation of water-soluble ZrOCl2.8H2O, YCl3.6H2O and Ce(NO3)3.6H2O, and their compacts were pressurelessly sintered at 1400 and 150$0^{\circ}C$ for 2hrs in air. 2mol% Y2O3-ZrO3 showed the most superior strength (1003MPa) and microhardness (12.6GPa), while 10 mol%CeO2-ZrO2 had the hightest toughness (13.3 MPa.m1/2) after sintering at 140$0^{\circ}C$. The addition of Y2O3 into Y2O3-ZrO3 decreased mean grain size and increased strength and hardness but decrease toughness. On the other hand, the addition of CeO2 into Y2O3-ZrO2 enhanced the stability of tetragonal phase during low-temperature aging for a long time under hydrothermal atmosphere.

  • PDF

Implementation of Battery Management System for Li-ion Battery Considering Self-energy Balancing (셀프에너지 밸런싱을 고려한 리튬이온전지의 Battery Management System 구현)

  • Kim, Ji-Myung;Lee, Hu-Dong;Tae, Dong-Hyun;Ferreira, Marito;Park, Ji-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.585-593
    • /
    • 2020
  • Until now, 29 fire accidents have occurred; 22 of them were caused by the interconnection of renewable energy sources that occurred during the rest period after the lithium-ion battery had been fully charged regardless of the seasons. The fire accidents of ESS were attributed to thermal runaway due to the overcharging of a few cells with the phenomenon of self-energy balancing, which is unintentional current flow from cells with a high SOC to the low cells if the SOC condition of each cell connected in parallel is different. Therefore, this paper proposes a novel configuration and operation algorithm of the BMS to prevent the self-energy balancing of ESS and presents a hybrid SOC estimation algorithm. From the test results of the self-energy balancing phenomenon between aging and normal cells based on the proposed algorithm and BMS, it was confirmed the possibility of self-energy balancing, which is unintentional current flow from cells with a high SOC to cells with a low SOC. In addition, the proposed configuration of the BMS is useful and practical to improve the safety of lithium-ion batteries because the BMS can reliably disconnect a parallel connection of the cells if the self-energy balancing current becomes excessively high.

Electrical Stability of Zn-Pr-Co-Cr-Dy Oxides-based Varistor Ceramics (Zn-Pr-Co-Cr-Dy 산화물계 바리스터 세라믹스의 전기적 안정성)

  • 남춘우;박종아;김명준;류정선
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1067-1072
    • /
    • 2003
  • The electrical stability of the varistor ceramics composed of Zn-Pr-Co-Cr-Dy oxides-based varistors was investigated at 0.0∼2.0 mol% Dy$_2$O$_3$ content under DC accelerated aging stress. The ceramic density was increased up to 0.5 mol% Dy$_2$O$_3$ whereas further addition of Dy$_2$O$_3$ decreased sintered ceramic density. The density sailently affected the stability due to the variation of conduction path. The nonlinearity of varistor ceramics was greatly improved above 45 in the nonlinear exponent and below nearly 1.0 ${\mu}$A by incorporating Dy$_2$O$_3$. Under 0.95 V$\_$1mA/150$^{\circ}C$/24 h stress state, the varistor ceramics doped with 0.5 mol% Dy$_2$O$_3$ exhibited the highest electrical stability, in which the variation rates of varistor voltage, nonlinear exponent, and leakage current were -0.9%, -14.4%, and +483.3%, respectively. The variation rates of relative permittivity and dissipation factor were +7.1% and +315.4%, respectively. The varistors with further addition of Dy$_2$O$_3$ exhibited very unstable state resulting in the thermal runaway due to low density.

Effect of CeO2 Addition on De-CH4 and NOx Performance (CH4와 NOx 저감 성능에 관한 CeO2 첨가의 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.473-479
    • /
    • 2017
  • Due to environmental pollution, hazards of the human body, and global warning, changes in the power train of automobiles are intensifying, and the market forelectronic vehicles is rising. Also, in order to meet the stricter emission regulations forautomobiles with internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is increasing gradually. The objective of this study is to investigate the effectsfrom additive ceric oxide ($CeO_2$) loading amounts to improve the methane ($CH_4$) and nitric oxide (NOx) abatement ability of the natural gas oxidation catalysts(NGOC) reducing toxic gases emitted from compressed natural gas (CNG) buses. Three kinds of NGOC were prepared under the following conditions: fresh and $700^{\circ}C$ for 12hr thermal aging, and the reduction performance of toxic gases was evaluated. Fresh $1Pt-3Pd-1Rh-3MgO-6CeO_2/(Al+Z)$ NGOC containing 6wt% $CeO_2$ had the highest dispersivity of palladium (Pd) with high selectivity to $CH_4$ and improved harmful gas reduction performance. The NGOC with 6wt% $CeO_2$ loaded the least decreased in the dispersivity of the noble metal, and showed the highest reduction of harmful gases due to the thermal durability of $CeO_2$.

Failure Analysis on High Pressure Steam Piping of 500 MW Thermal Power Plant (500 MW 화력발전소 고압 증기 배관 손상 원인 분석)

  • Kim, Jeongmyun;Jeong, Namgeun;Yang, Kyeonghyun;Park, Mingyu;Lee, Jaehong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The 500 MW Korean standard coal-fired power plant is the largest standardized power plant in Korea and has played a pivotal role in domestic power generation for over 20 years. In addition to the aging degradation due to long term operation, the probability of failure of power generation facilities is increasing due to frequent startup and stop caused by the lower utilization rate due to air pollution problem caused by coal-fired power plants. Among them, steam piping plays an important role in transferring high-temperature & pressure steam produced in a boiler to turbine for power generation. In recent years, failure of steam piping of large coal-fired power plant has frequently occurred. Therefore, in this study, failure analysis of high pressure piping weld was conducted. We identify the damage caused by high stress due to abnormal supporting structure of the piping and suggest improved supporting structure to eliminate high stress through microstructure analysis and piping stress analysis to prevent the occurrence of the similar failure of other power plant in the case of repetitive damage to the main steam piping system of the 500 MW Korean standard coal-fired power plant.

Evaluation of marginal leakage of bulk fill flowable composite resin filling with different curing time using micro-computed tomography technology (Bulk fill 유동성 복합레진의 변연 누출에서 다른 중합시간의 영향에 대해 마이크로시티를 이용한 평가)

  • Kim, Eun-Ji;Lee, Kyu-Bok;Jin, Myoung-Uk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.184-193
    • /
    • 2016
  • Purpose: To evaluate marginal leakage of bulk fill flowable composite resin filling with different curing time by using microcomputed tomography technology. Materials and Methods: 30 previously extracted human molars were randomly divided into 6 groups based upon restorative system and different curing time. Class II cavities (vertical slot cavities) were prepared. An individual metallic matrix was used to build up the proximal wall. The SonicFill or SureFil SDR flow was inserted into the preparation by using 1 bulk increment, followed by light polymerization for different curing times. The different exposure times were 20, 40, and 60 seconds. All specimens were submitted to 5,000 thermal cycles for artificial aging. Micro-CT scanning was performed by using SkyScan 1272. One evaluator assessed microleakage of silver nitrated solution at the resin-dentin interface. The 3D image of each leakage around the restoration was reconstructed with CT-Analyser V.1.14.4. The leakage was analyzed with the Mann-Whitney test. Results: Significant differences were observed between the light curing times, but no significant differences were found between the bulk fill composite resins. Increasing in the photoactivation time resulted in greater microleakage in all the experimental groups. Those subjected to 60 seconds of light curing showed higher microleakage means than those exposed for 20 seconds and 40 seconds. Conclusion: Increasing the photoactivation time is factor that may increase marginal microlekage of the bulk fill composite resins. Further, micro-CT can nondestructively detect leakage around the resin composite restoration in three dimensions.

Magnetic Susceptibility depending on the Thermal Degradation of HK-40 Steel (HK-40강의 열화도에 따른 자화율의 변화)

  • Kim, Jeong-Min;Son, De-Rac;Park, Jong-Seo;Nahm, Seung-Hoon;Kim, Dong-Gyun;Han, Sang-In;Choi, Song-Chun;Ryu, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • Since the used materials of furnace heater tube with different kinds of thermal degradation were not commonly available, the HK-40 steel specimens were heat-treated isothermally at elevated temperature to simulate the microstructure at the service temperature. HK-40 steel specimens with five different aging time were prepared by isothermal heat treatment at $1050^{\circ}C$. The characteristics of the magnetic susceptibility have been investigated for the degradation evaluation of HK-40 steel. The magnetic susceptibility at room temperature increases as the extent of degradation of the materials increases. The variation of magnetic susceptibility was compared with the variation of tensile properties and Vickers hardness. To investigate the effect of the microsturctural change on the characteristics of tensile properties, hardness and magnetic susceptibility, the microstructures were examined by a scanning electron microscope(SEM) and the chemical compositions were analyzed by a energy spectrometer of SEM. As a result, the magnetic susceptibility method can be suggested as one of the nondestructive evaluation methods for the degradation of the HK-40 steel.

Effects of Temperature on the Development and Reproduction of Ostrinia scapulalis (Lepidoptera: Crambidae) (콩줄기명나방(Ostrinia scapulalis) (나비목: 포충나방과)의 발육과 산란에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.577-590
    • /
    • 2022
  • Ostrinia scapulalis is one of important pests in leguminous crops, especially red bean. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of O. scapulalis at eleven constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, and 36℃. Eggs and larvae successfully developed next life stage at most temperature subjected except 7, 10 and 13℃. The developmental period of egg, larva and pupa decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of O. scapulalis were estimated by linear regression as 13.5℃ and 384.5DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 19.4℃ and 39.8℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of O. scapulalis was 20.4℃. Adults produced viable eggs at the temperature range between 16℃ and 34℃, and showed a maximum number, ca. 416 offsprings, at 25℃. Adult models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed, using the temperature-dependent adult traits. Temperature-dependent development models and adult oviposition models will be useful components to understand the population dynamics of O. scapulalis and will be expected using a basic data for establishing the strategy of integrated pest management in leguminous crops.

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF