• Title/Summary/Keyword: Thermal Transformation

Search Result 389, Processing Time 0.026 seconds

A Study on the Characteristics of Residual Stress in the Manufacturing Process of AISI 1536V and AISI A387 (제조공정에 따른 강종별 잔류응력 특성에 관한 연구; AISI 1536V, AISI A387)

  • Hwang, Sung-Kug;Moon, Jeong-Su;Kim, Han Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.100-106
    • /
    • 2020
  • This study analyzes the residual stress of AISI 1536V for an engine shaft of the shipbuilding industry and AISI A387 for a reactor shell of the chemical refining industry by the hole drilling method with a strain gauge rosette, which transforms fine mechanical changes into electrical signals. Tensile residual stress is generated in the forging and heat treatment process because specimens are affected by thermal stress and metal transformation stress. In the heat treatment process, the residual stress of AISI A387 is almost 170% the yield strength at 402 MPa. Since during the machining process, variable physical loads are applied to the material, compressive residual stress is generated. Under the same condition, the mechanical properties greatly affect the residual stress during the machining process. After the stress-relieving heat treatment process, the residual stress of AISI A387 is reduced below the yield strength at 182 MPa. Therefore, it is necessary to control the temperature, avoid rapid heat change, and select machining conditions depending on the mechanical properties of materials during manufacturing processes. In addition, to sufficiently reduce the residual stress, it is necessary to study the optimum condition of the stress-relieving heat treatment process for each material.

Properties of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 물성)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.289-298
    • /
    • 1993
  • Properties in terms of the variation of the glass compositions, which were density (p), molar volume(Vm), atom/ion packing density (Dp), refractive index (nD), transformation temperature (Tg), dilatometric softening point (Td), thermal expansion coefficient (α), Young's modulus (E), and knoop hardness (KHN) were investigated in CaO-SiO2 glasses and CaO-P2O5-SiO2 glasses containing less than 10mole% of P2O5. Those properties were measured by density measurement kit, Abbe refractometer, dilatometer, ultrasonic pulse echo equipment, and micro hardness tester. When CaO content was increased in CaO-SiO2 glasses, p, Dp, nD, Tg, Td, α, E and KHN were increased, while Vm was decreased. When P2O5 was added to the CaO-SiO2 glasses with constant CaO/SiO2 ratio as 1.07, p, Dp, nD, Tg, Td, α, E and KHN were decreased, while Vm was increased. When the amount of P2O5 in glasses was kept constant, the changes of the properties with variation of CaO content in the CaO-P2O5-SiO2 glasses were very similar to those of CaO-SiO2 glasses. These phenomena could be explained by the structural role of P2O5 in the CaO-P2O5-SiO2 glasses, which was polymerization of siicate structures and resulted in [PO4] monomer structure in glasses. Due to this structural characteristics, the bond strength and packing density were changed with compositions. Proportional relationships between 1) np and Dp, 2) Tg, Td, α and CaO content, 3) E and Vm-1, and 4) KHN and P2O5 content were evaluated in this investigation.

  • PDF

Characteristics of Ag-added Ge2Sb2Te5 Thin Films and the Rapid Crystallization (Ag-첨가 Ge2Sb2Te5 박막의 물성 및 고속 결정화)

  • Kim, Sung-Won;Song, Ki-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.629-637
    • /
    • 2008
  • We report several experimental data capable of evaluating the amorphous-to-crystalline (a-c) phase transformation in $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ (x = 0, 0.05, 0.1) thin films prepared by a thermal evaporation. The isothermal a-c structural phase changes were evaluated by XRD, and the optical transmittance was measured in the wavelength range of $800{\sim}3000$ nm using a UV-vis-IR spectrophotometer. A speed of the a-c transition was evaluated by detecting the reflection response signals using a nano-pulse scanner with 658 nm laser diode (power P = $1{\sim}17$ mW, pulse duration t = $10{\sim}460$ ns). The surface morphology and roughness of the films were imaged by AFM. It was found that the crystallization speed was so enhanced with an increase of Ag content. While the sheet resistance of c-phase $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ was similar to that of c-phase $Ge_2Sb_2Te_5$ (i.e., $R_c{\sim}10{\Omega}/{\square}$), the sheet resistance of a-phase $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ was found to be lager than that of a-phase $Ge_2Sb_2Te_5$, $R_a{\sim}5{\times}10^6{\Omega}{/\square}$. For example, the ratios of $R_a/R_c$ for $Ge_2Sb_2Te_5$ and $(Ag)_{0.1}(Ge_2Sb_2Te_5)_{0.9}$ were approximately $5{\times}10^5$ and $5{\times}10^6$, respectively.

A Study on the Reliability of Failure Diagnosis Methods of Oil Filled Transformer using Actual Dissolved Gas Concentration (유중가스농도를 이용한 유입식 변압기 고장진단 기법의 신뢰성에 관한 연구)

  • Park, Jin-Yeub;Chin, Soo-Hwan;Park, In-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.114-119
    • /
    • 2011
  • Large Power transformer is a complex and critical component of power plant and consists of cellulosic paper, insulation oil, core, coil etc. Insulation materials of transformer and related equipment break down to liberate dissolved gas due to corona, partial discharge, pyrolysis or thermal decomposition. The dissolved gas kinds can be related to the type of electrical faults, and the rate of gas generation can indicate the severity of the fault. The identities of gases being generated are using very useful to decide the condition of transformation status. Therefore dissolved gas analysis is one of the best condition monitoring methods for power transformer. Also, on-line multi-gas analyzer has been developed and installed to monitor the condition of critical transformers. Rogers method, IEC method, key gas method and Duval Triangle method are used to failure diagnosis typically, and those methods are using the ratio or kinds of dissolved gas to evaluate the condition of transformer. This paper analyzes the reliability of transformer diagnostic methods considering actual dissolved gas concentration. Fault diagnosis is performed based on the dissolved gas of five transformers which experienced various fault respectively in the field, and the diagnosis result is compared with the actual off-line fault analysis. In this comparison result, Diagnostic methods using dissolved gas ratio like Rogers method, IEC method are sometimes fall outside the ratio code and no diagnosis but Duval triangle method and Key gas method is correct comparatively.

Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation (초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석)

  • Kim, Jae-Yeol;Kwak, Yi-Gu;Yoo, Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

Microstructural Evolution in the Unidirectional Heat Treatment of Cu-35%Sn Alloys (Cu-35%Sn 합금의 일방향 열처리에서 출현하는 미세조직)

  • Choi, K.J.;Jee, T.G.;Park, J.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.320-328
    • /
    • 2003
  • A specimen of Cu-35%Sn alloy has been subjected to the unidirectional heat treatment in an attempt to examine the evolution of microstructures under varying thermal conditions. The specimen was cast in the form of a cylinder 10 mm in diameter and 200 mm in length, which was then installed in the temperature gradient field established inside a vertical tube furnace. The furnace temperature was adjusted to make the upper part at $750^{\circ}C$ and bottom end part at $300^{\circ}C$ of the specimen. The experiment was terminated by dropping it into water after the 30 minutes holding at given temperature. By the rapid cooling, the high temperature phases, ${\gamma}$ and ${\zeta}$, were retained at ambient temperature with some of ${\gamma}$ phase transformed to ${\varepsilon}$ phase, especially at the grain boundaries of ${\gamma}$ phase. The presence of ${\varepsilon}$ phase was found to determine the nature of phase transformations of the ${\zeta}$ phase undergoes upon cooling. In the close area of the ${\varepsilon}$ phase, ${\varepsilon}$ phase grew separately out of ${\zeta}$, and adds to the preexisting ${\varepsilon}$ whereas in areas away from ${\varepsilon}$, both ${\delta}$ and ${\varepsilon}$ grew simultaneously out of ${\zeta}$, and formed a lamella eutectoid structure. The transformation to ${\delta}$ was found to occur only in slow cooling. The hardness on each phase showed that the retained phases, ${\gamma}$ and ${\zeta}$, could be plastically deformed without brittle fracture while the phases, ${\varepsilon}$ and ${\delta}$, were too brittle to be deformed.

Computational Simulation of Carburizing and Quenching Processes of a Low Alloy Steel Gear (저합금강 기어의 침탄 및 소입 공정에 대한 전산모사)

  • Lee, Kyung Ho;Han, Jeongho;Kim, Gyeong Su;Yun, Sang Dae;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.300-309
    • /
    • 2015
  • The aim of the present study was to predict the variations in microstructure and deformation occurring during gas carburizing and quenching processes of a SCM420H planetary gear in a real production environment using the finite element method (FEM). The motivation for the present study came from the fact that previous FEM simulations have a limitation of the application to the real heat treatment process because they were performed with material properties provided by commercial programs and heat transfer coefficients (HTC) measured from laboratory conditions. Therefore, for the present simulation, many experimentally measured material properties were employed; phase transformation kinetics, thermal expansion coefficients, heat capacity, heat conductivity and HTC. Particularly, the HTCs were obtained by converting the cooling curves measured with a STS304 gear without phase transformations using an oil bath with an agitator in a real heat treatment factory. The FEM simulation was successfully conducted using the aforementioned material properties and HTC, and then the predicted results were well verified with experimental data, such as the cooling rate, microstructure, hardness profile and distortion.

Mathematical Model of the Edge Sealing Parameters for Vacuum Glazing Panel Using Multiple Regression Method (다중회귀분석법을 이용한 진공유리패널 모서리 접합부와 공정변수간의 수학적 모델 개발)

  • Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.961-966
    • /
    • 2012
  • The concern about vacuum glass is enhanced as society gets greener and becomes more concerned about energy savings due to the rising cost of oil. The glass edge sealing process needs the high reliability among the main process for the vacuum glass development in order to maintain between the two glass by the vacuum. In this paper, the process of the edge sealing was performed by using the hydrogen mixture gas which is the high density heat source unlike the traditional method glass edge sealing by using the frit as the soldering process. The ambient temperature in the electric furnace was set in the edge sealing to prevents the thermal impact and transformation of the glasses and the temperature distribution uniformity was measured. The parameter of the edge sealing was set through the basic test and the mathematical relation with the area of the glass edge parts according to the parameter was drawn using the multiple regression analysis method.

Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites

  • Letti, Camila J.;Costa, Karla A.G.;Gross, Marcos A.;Paterno, Leonardo G.;Pereira-da-Silva, Marcelo A.;Morais, Paulo C.;Soler, Maria A.G.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.215-230
    • /
    • 2017
  • The development of hybrid systems comprising nanoparticles and polymers is an opening pathway for engineering nanocomposites exhibiting outstanding mechanical, optical, electrical, and magnetic properties. Among inorganic counterpart, iron oxide nanoparticles (IONP) exhibit high magnetization, controllable surface chemistry, spintronic properties, and biological compatibility. These characteristics enable them as a platform for biomedical applications and building blocks for bottom-up approaches, such as the layer-by-layer (LbL). In this regard, the present study is addressed to investigate IONP synthesised through co-precipitation route (average diameter around 7 nm), with either positive or negative surface charges, LbL assembled with sodium sulfonated polystyrene (PSS) or polyaniline (PANI). The surface and internal morphologies, and electrochemical properties of these nanocomposites were probed with atomic force microscopy, UV-vis and Raman spectroscopy, scanning electron microscopy, cross-sectional transmission electron microscopy, and electrochemical measurements. The nanocomposites display a globular morphology with IONP densely packed while surface dressed by polyelectrolytes. The investigation of the effect of thermal annealing (300 up to $600^{\circ}C$) on the oxidation process of IONP assembled with PSS was performed using Raman spectroscopy. Our findings showed that PSS protects IONP from oxidation/phase transformation to hematite up to $400^{\circ}C$. The electrochemical performance of nanocomposite comprising IONP and PANI were investigated in $0.5mol{\times}L^{-1}$ $Na_2SO_4$ electrolyte solution by cyclic voltammetry and chronopotentiometry. Our findings indicate this structure as promising candidate for potential application as electrodes for supercapacitors.

Preliminary Study of a Turbopump Pyro Starter (터보펌프 파이로 시동기 기초연구)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • The feasibility study into the development of turbine spinners, which start up the turbo-pump, has been carried out and the design requirements and parameters ranges have been presented. Turbine spinners use the solid propellant as such composite propellant based AN compound with high energy plasticizers, coolants, and phase stabilizer which relieves a sensible volume change due to the phase transformation of AN near room temperature. Propellants which have a homing rate of $0.2{\sim}0.3\;mm/s$ and pressure exponent ranged from 0.3 to 0.6, showed stable burn-out in the standard motor tests. Both the magnitude of ignition energy and its thermal transfer mechanism have been proved to have a tangible effect on the ignition of the pyre starter, and the results of this study showed that a flame temperature of 1400K would be quite adequate to get a stable ignition for the AN composite propellant.