• Title/Summary/Keyword: Thermal Stabilizer

Search Result 61, Processing Time 0.023 seconds

Thermal Stability Improvement of Liquid Fuel by Using Some Additives (첨가제를 이용한 액체연료의 열안정성 향상)

  • Park, Sun-Hee;Kim, Joong-Yeon;Chun, Byung-Hee;Han, Jeong-Sik;Jeong, Byung-Hun;Kim, Sung-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2011
  • We investigated thermal stability improvement of exo-tetrahydrodicyclopentadiene (exo-THDCP) with thermal stabilizers (additives). The reaction products were sample during the reactions. The compositions of products were determined by gas chromatography-mass spectrometry (GC-MS) to measure thermal decomposition products of exo-THDCP and to specify mechanism for thermal stabilizers. Hydrogen donors (thermal stabilizers) such as 1,2,3,4-tetrahydroquinoline (THQ), benzyl alcohol (BnOH) increased thermal stability of exo-THDCP. These materials donated hydrogen to radical of exo-THDCP produced after initiation of exo-THDCP. We found that stabilization of exo-THDCP radicals decreased activity of primary products of exo-THDCP and lowered formation of secondary products (above-$C_{11}$ products).

Development of an Optimization Program for a 2G HTS Conductor Design Process

  • Kim, K.L.;Hwang, S.J.;Hahn, S.;Moon, S.H.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The properties of the conductor.mechanical, thermal, and electrical-are the key information in the design and optimization of superconducting coils. Particularly, in devices using second generation (2G) high temperature superconductors (HTS), whose base materials (for example, the substrate or stabilizer) and dimensions are adjustable, a design process for conductor optimization is one of the most important factors to enhance the electrical and thermal performance of the superconducting system while reducing the cost of the conductor. Recently, we developed a numerical program that can be used for 2G HTS conductor optimization. Focusing on the five major properties, viz. the electrical resistivity, heat capacity, thermal conductivity, Z-value, and enthalpy, the program includes an electronic database of the major base materials and calculates the equivalent properties of the 2G HTS conductors using the dimensions of the base materials as the input values. In this study, the developed program is introduced and its validity is verified by comparing the experimental and simulated results obtained with several 2G HTS conductors.

Degradation Behavior of Nylon 4 in the Presence of Newly Synthesized Thermal Stabilizers (합성 열안정제에 의한 나일론 4의 분해거동)

  • Jang, Geunseok;Kim, Jongho;Kim, Daigeun;Kim, Young Jun;Lee, Taek Seung
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.314-319
    • /
    • 2014
  • Three kinds of thermal stabilizers for nylon 4 were synthesized to incorporate both hindered amine groups and methylene units with various lengths. It is expected that the hindered amine groups play a role in the capture of degradation-triggering species. Considering sequence rules, hydrogen bonding formed between nylon 4 and the stabilizers is optimized to alter the lengths of the methylene units in the stabilizers. As a result, it was found that a tetramethylene unit in the stabilizer is an optimal length for hydrogen bonding in terms of isothermal thermogravimetric analysis (TGA). Considering the slight and often negligible improvement of thermal stability of nylon 4 containing commercially-available nylon 6 stabilizers, retardation of thermal degradation has been substantially improved upon.

Heat transfer monitoring between quenched high-temperature superconducting coated conductors and liquid nitrogen

  • Rubeli, Thomas;Colangelo, Daniele;Dutoit, Bertrand;Vojenciak, Michal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.10-13
    • /
    • 2015
  • High-temperature superconducting coated conductors (HTS-CCs) are good candidates for resistive superconducting fault current limiter (RSFCL) applications. However, the high current density they can carry and their low thermal diffusivity expose them to the risk of thermal instability. In order to find the best compromise between stability and cost, it is important to study the heat transfer between HTS-CCs and the liquid nitrogen ($LN_2$) bath. This paper presents an experimental method to monitor in real-time the temperature of a quenched HTS-CC during a current pulse. The current and the associated voltage are measured, giving a precise knowledge of the amount of energy dissipated in the tape. These values are compared with an adiabatic numerical thermal model which takes into account heat capacity temperature dependence of the stabilizer and substrate. The result is a precise estimation of the heat transfer to the liquid nitrogen bath at each time step. Measurements were taken on a bare tape and have been repeated using increasing $Kapton^{(R)}$ insulation layers. The different heat exchange regimes can be clearly identified. This experimental method enables us to characterize the recooling process after a quench. Finally, suggestions are done to reduce the temperature increase of the tape, at a rated current and given limitation time, using different thermal insulation thicknesses.

Fabrication and test of heater triggered persistent current switch using coated conductor tapes (Coated conductor를 이용한 히터트리거 방식의 영구전류 스위치의 제작과 실험)

  • Kim, Young-Jae;Yang, Seong-Eun;Park, Dong-Keun;Ahn, Min-Cheol;Yoon, Yong-Soo;Ko, Tae-Huk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2039-2040
    • /
    • 2006
  • Persistent current switch (PCS) system in NMR, MRI, MAGLEV and SMES has many advantages, such as uniformity and durability of magnetic field and reducing a thermal loss, which enable many superconducting application to operate effectively. This paper deals with fabrication and test of heater trigger persistent current switch using coated conductor (CC) which has high n-index, critical current independency from external magnetic field and adaptable selectivity of stabilizer. PCS system consists of magnet power supply for energizing current to a magnet, heater, switch and magnet using coated conductor tape. Finite element method (FEM) is used to simulate thermal quench (switching) characteristic and design heater trigger. With FEM simulation, optimal length of heater is calculated by temperature and time analysis. Fabrication of PCS system and test of heater trigger characteristic were performed and compared with simulation result. This paper would be the foundation of researches of superconducting switching application.

  • PDF

Mechanical Properties and Thermal Stability of Waste PVC/HDPE Blend Prepared by Twin-screw Extruder

  • Lee, Rami;Park, Se-Ho;Baek, Jong-sung;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Recycling of waste polyvinyl chloride plastics has attracted much attention due to environmental problems, but the poor mechanical properties, low thermal stability, frequent breakage of strands, and melt cracking of the waste plastics have limited their widespread use. To overcome these disadvantages of waste PVC (W-PVC), recycled PVC powder blend was prepared by adding high-density polyethylene (HDPE) and ethylene vinyl acetate (EVA) as a heat stabilizer and compatibilizer, respectively. An intermeshing co-rotating twin screw extruder was used to prepare the blend, and the characteristics of the blend were analyzed by SEM and TGA, and by using a UTM and Izod impact tester. The impact strength was improved as the EVA content increased for the W-PVC/HDPE (80/20 wt%) blend. As the HDPE and EVA contents increased in the W-PVC/HDPE/EVA blend, the impact strength increased. SEM observations also revealed the improved interfacial adhesion for the EVA-containing blend.

Effects of Selected Stabilizers on the Color Deterioration of Crude Pigment Extract from Schizandra fruit (Schizandra Fructus) (여러 가지 안정화 물질이 오미자 색소 추출물의 가열 변색에 미치는 영향)

  • Kim, Hyun-Jung;Cho, Sung-Bin;Chun, Hyang-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.5
    • /
    • pp.475-482
    • /
    • 2003
  • The effects of selected stabilizers and sugars on color deterioration of anthocyanin in Schizandra fructus were examined at $100^{\circ}C$ for $120{\sim}180$ min. Among four test sugars, it was found that fructose accelerated the thermal color deterioration while maltose retarded the color deterioration by 40%. Maltodextrin and ${\gamma}$-cyclodextrin showed the highest stabilizing effect on the thermal color deterioration of crude pigment extract from Schizandra fructus(CPES) containing 2 mg% of anthocyanin. Addition of maltodextrin or ${\gamma}$-cyclodextin at 5% retarded thermal color deterioration of CPES. In gel system, 5% of maltodextrin also retarded the color deterioration by $15{\sim}20%$ during storage at $25^{\circ}C\;and\;35^{\circ}C$.

Synthesis of Tialite Ceramic Pigments and Coloring in Glazes (Tialite계 세라믹 안료의 합성 및 유약에서의 발색)

  • Kim, Yeon-Ju;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.450-455
    • /
    • 2011
  • [ $Al_2TiO_5$ ]has a high refractive index and good solubility of the chromophore in the $Al_2TiO_5$ lattice, which allows this structure to be a good candidate for the development of new ceramic pigments. However, pure $Al_2TiO_5$ is well known to decompose on firing at $900{\sim}1100^{\circ}C$. However, this process can be inhibited by the incorporation of certain metal cations into its crystalline lattice. In this study, the synthesis of gray ceramic pigment was performed by doping cobalt on the $Al_2TiO_5$ crystal structure. The $Al_2TiO_5$ was synthesized using $Al_2O_3$ and $TiO_2$, and doped with $Co_3O_4$ as a chromophore material. In order to prevent the thermal decomposition during the cooling procedure, MgO was added to samples by 0.05 mole, 0.1 mole, and 0.15 mole as a stabilizer. The samples were fired at $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigment were analyzed using XRD, Raman spectroscopy, UV, and UV-vis. $Al_2O_3$ was available for the formation of $CoAl_2O_4$, which should also be considered in order to explain the small amount of this phase detected in the sample with the higher $Co^{2+}$ content (${\geq}$ 0.03 mole). It was found that the solubility limit of $Co^{2+}$ in the $Al_2TiO_5$ crystal was 0.02 mole% through an analysis of Raman spectroscopy. Through the addition of a pigment with 0.02 mole% of $Co^{2+}$ to lime-barium glaze, stabilized gray color pigments with 66.54, -2.35, and 4.68 as CIE-$L^*a^*b^*$ were synthesized.

Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells (유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석)

  • Sung, Hukwang;Sharma, Monika;Jang, Jeonghee;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.