• Title/Summary/Keyword: Thermal Simulation

Search Result 2,548, Processing Time 0.03 seconds

A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code (Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구)

  • Jeong, Phil hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.

Coal Ash Combustion Simulation for 500-MW Coal-firing Boiler (500MW급 화력발전 보일러의 석탄회 연소 시뮬레이션)

  • Hwang, Min-Young;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Gyu-Bo;Kim, Seung-Mo;Park, Myung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.939-946
    • /
    • 2011
  • In thermal power generation companies, the recycling of refined ash (LOI < 6%) obtained from a PC-firing furnace is beneficial for the companies, e.g., it can be used for making lightweight aggregates. However, ash having a high LOI, which cannot be reused, is still buried in the ground. To obtain refined ash, the re-burning of high-LOI ash (LOI > 6%) in a PC-firing furnace can be an alternative. In this study, a numerical analysis was performed to demonstrate the effects of ash re-burning. An experimental constant value was decided by TGA (thermo-gravimetric analysis), and a DTF (drop-tube furnace) was used in the experiment for calculating the combustion of ash. On the basis of the trajectory of the moving particles of coal and ash, it was concluded that supplying ash near the burner, which is located high above the ground, is appropriate. On the basis of numerical results, it was concluded that an ash supply rate of 6 ton/h is suitable for combustion, without affecting the PC-firing boiler.

INFLUENCE OF POST TYPES AND SIZES ON FRACTURE RESISTANCE IN THE IMMATURE TOOTH MODEL (미성숙 치아 모델에서 포스트의 종류와 크기가 치아의 파절 저항성에 미치는 영향에 관한 연구)

  • Kim, Jong-Hyun;Park, Sung-Ho;Park, Jeong-Won;Jung, Il-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.257-266
    • /
    • 2010
  • The purpose of this study was to determine the effect of post types and sizes on fracture resistance in immature tooth model with various restorative techniques. Bovine incisors were sectioned 8 mm above and 12 mm below the cementoenamel junction to simulate immature tooth model. To compare various post-and-core restorations, canals were restored with gutta-percha and resin core, or reinforced dentin wall with dual-cured resin composite, followed by placement of D.T. LIGHT-POST, ParaPost XT, and various sizes of EverStick Post individually. All of specimens were stored in the distilled water for 72 hours and underwent 6,000 thermal cycles. After simulation of periodontal ligament structure with polyether impression material, compressive load was applied at 45 degrees to the long axis of the specimen until fracture was occurred. Experimental groups reinforced with post and composite resin were shown significantly higher fracture strength than gutta-percha group without post placement (p < 0.05). Most specimens fractured limited to cervical third of roots. Post types did not influence on fracture resistance and fracture level significantly when cement space was filled with dual-cured resin composite. In addition, no statistically significant differences were seen between customized and standardized glass fiber posts, which cement spaces were filled with resin cement or composite resin individually. Therefore, root reinforcement procedures as above in immature teeth improved fracture resistance regardless of post types and sizes.

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

Validation of a New Design of Tellurium Dioxide-Irradiated Target

  • Fllaoui, Aziz;Ghamad, Younes;Zoubir, Brahim;Ayaz, Zinel Abidine;Morabiti, Aissam El;Amayoud, Hafid;Chakir, El Mahjoub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1273-1279
    • /
    • 2016
  • Production of iodine-131 by neutron activation of tellurium in tellurium dioxide ($TeO_2$) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gaswelding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ${\leq}10^{-4}mbr.L/s$, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to $600^{\circ}C$ with the appearance of deformations on lids beyond $450^{\circ}C$. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from4 hours of irradiation at a power level of 0.5MWup to 35 hours (7 h/d for 5 days a week) at 1.5MW. The results showthat the irradiated targets are tight because no iodine-131 was released in the atmosphere of the reactor building and in the reactor cooling water of the primary circuit.

The Real Scale Fire Test for Fire Safety in Apartment Housing (실물화재실험을 통한 공동주택의 화재안전성 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.57-65
    • /
    • 2009
  • This study was intended to conduct a Real-scale fire test to predict the fire behavior by unit space at the apartment building where a huge casualties and injuries are likely. After setting the inflammables inside the house, the test aimed to identify the fire characteristics to each unit item was carried out. The house was divided into 4 unit space such as kitchen, living room, bedroom and a study for a real scale fire test. As a result, bedroom reached to flashover state in 5minutes after setting the fire, indicating a rapid fire growth such as 7433.3kW of maximum thermal emissivity, 578.6ppm of carbon monoxide, 1.25ppm of carbon dioxide and $1,350^{\circ}C$ of maximum indoor temperature. Particularly, the fire growth was made up to critical temperature which might cause a severe damage to the people within 3minutes, if the fire were not extinguished at inflammable space at the early stage of fire, which stressed the need of early response. The result of a real scale fire test could be compared with the outcome of expanded simulation test and used in predicting the fire spread at the space for different use.

Design and Integrity Evaluation of High-temperature Piping Systems in the STELLA-2 Sodium Test Facility (STELLA-2 소듐 시험 시설 고온 배관 계통의 설계 및 건전성 평가)

  • Son, Seok-Kwon;Lee, Hyeong-Yeon;Ju, Yong-Sun;Eoh, JaeHyuk;Kim, Jong-Bum;Jeong, Ji-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.775-782
    • /
    • 2016
  • In this study, elevated temperature design and integrity evaluation have been conducted using two different piping design codes for the high-temperature piping systems of sodium integral effect test loop for safety simulation and assessment(STELLA-2) being developed by KAERI(Korea Atomic Energy Research Institute). The design code of ASME B31.1 for power piping and French nuclear grade piping design guideline, RCC-MRx RD-3600 were applied, and conservatism of those codes was quantified based on the piping integrity evaluation results. The piping system of Model DHRS, Model IHTS and PSLS are to be installed in STELLA-2. The integrity evaluation results for the three piping systems according to the two design codes showed that integrity of the piping system was confirmed. As a code comparison result, ASME B31.1 was shown to be more conservative for sustained loads while RD-3600 was more conservative for thermal loads compared to B31.1.

Numerical Simulation of Local Circulation Over the Daechung Lake Area by Using the Mesoscale Model (중규모 수치 모델을 이용한 대청 호수 주변의 국지 순환 모의)

  • Byon, Jae-Young;Choi, Young-Jean;Seo, Beom-Keun
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.464-477
    • /
    • 2009
  • In this study, we examined the patterns of local circulation over the Daechung lake area through the numerical experiment designed to investigate the impact of lake on the local circulation. The results of numerical experiment showed that the surface temperature predicted by WRF model was lower than the observation, while the wind speed was stronger than the observation. The local circulation over the lake area was characterized by a lake breeze induced by a horizontal thermal contrast between the lake surface and the Surrounding land. At Daecheong Lake, a lake breeze formed at 09 LST and dissipated at 18 LST, with maximum intensity at 15 LST. The vertical extent of the simulated circulation was about 1,200 m. The specific humidity increased as the humid air above the lake moved landward due to the daytime circulation of the lake breeze. The numerical experiments of sensitivity to existence of the lake showed that the simulated surface temperature decreased in the experiment with the lake. Wind speed was more intense around the lake area when the actual land use was substituted by grassland land use. The results of numerical experiments suggest that the lake-induced lake breeze circulation has an effect on the meteorology of planetary boundary layer around the lake.

Performance Analysis on the Multi Stage Reheater Regeneration Cycle for Ocean Geothermal Power Generation (해양지열발전용 다단재열재생사이클 성능해석)

  • Lee, Ho Saeng;Cha, Sang Won;Jung, Young Kwon;Kim, Hyeon Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • In order to study the improvement of the multi stage regeneration cycles, muti-stage processes were applied to the cycles, respectively or together. The kinds of the cycles are multi stage reheater cycle (MS) and multi stage reheater regeneration cycle (MSR). Working fluid used was R134a and R245fa. Temperature of the heat source was $65^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$, and temperature of the heat sink was $5^{\circ}C$. Optimization simulation was conducted for improving the gross power and efficiency with multi stage reheater regeneration cycle for ocean thermal energy conversion(OTEC) with changing of a heat source, kind of the working fluid, and type of the cycle. Performance analysis of the various components was simulated by using the Aspen HYSYS for analysis of the thermodynamic cycle. R245fa shows better performance than R134a. This paper showed the most suitable working fluid with changing of a heat source and the kinds of working cycle. Compared to each other, MS showed better performance at gross power and MSR showed higher cycle efficiency.

Numerical Analysis of Warpage and Stress for 4-layer Stacked FBGA Package (4개의 칩이 적층된 FBGA 패키지의 휨 현상 및 응력 특성에 관한 연구)

  • Kim, Kyoung-Ho;Lee, Hyouk;Jeong, Jin-Wook;Kim, Ju-Hyung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2012
  • Semiconductor packages are increasingly moving toward miniaturization, lighter and multi-functions for mobile application, which requires highly integrated multi-stack package. To meet the industrial demand, the package and silicon chip become thinner, and ultra-thin packages will show serious reliability problems such as warpage, crack and other failures. These problems are mainly caused by the mismatch of various package materials and geometric dimensions. In this study we perform the numerical analysis of the warpage deformation and thermal stress of 4-layer stacked FBGA package after EMC molding and reflow process, respectively. After EMC molding and reflow process, the package exhibits the different warpage characteristics due to the temperature-dependent material properties. Key material properties which affect the warpage of package are investigated such as the elastic moduli and CTEs of EMC and PCB. It is found that CTE of EMC material is the dominant factor which controls the warpage. The results of RSM optimization of the material properties demonstrate that warpage can be reduced by $28{\mu}m$. As the silicon die becomes thinner, the maximum stress of each die is increased. In particular, the stress of the top die is substantially increased at the outer edge of the die. This stress concentration will lead to the failure of the package. Therefore, proper selection of package material and structural design are essential for the ultra-thin die packages.