• Title/Summary/Keyword: Thermal Resistance

Search Result 2,918, Processing Time 0.032 seconds

Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential

  • Wang, Zetao;Guo, Kailun;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3117-3129
    • /
    • 2022
  • Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520-600 K (the startup of the heat pipe), the h has approached 5-6 W m-2 K-1 while liquid film thickness is in 11-13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.

Low-k Polymer Composite Ink Applied to Transmission Line (전송선로에 적용한 Low-k 고분자 복합 잉크 개발)

  • Nam, Hyun Jin;Jung, Jae-Woong;Seo, Deokjin;Kim, Jisoo;Ryu, Jong-In;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.99-105
    • /
    • 2022
  • As the chip size gets smaller, the width of the electrode line is also fine, and the density of interconnections is increasing. As a result, RC delay is becoming a problem due to the difference in resistance between the capacitor layer and the electrical conductivity layer. To solve this problem, the development of electrodes with high electrical conductivity and dielectric materials with low dielectric constant is required. In this study, we developed low dielectric ink by mixing commercial PSR which protect PCB's circuits from external factors and PI with excellent thermal property and low-k characteristics. As a result, the ink mixture of PSR and PI 10:3 showed the best results, with a dielectric constant of about 2.6 and 2.37 at 20 GHz and 28 GHz, respectively, and dielectric dissipation was measured at about 0.022 and 0.016. In order to verify the applicability of future applications, various line-width transmission lines produced on Teflon were evaluated, and as a result, the loss of transmission lines using low dielectric ink mixed with PI was 0.12 dB less on average in S21 than when only PSR was used.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Electrical Characterization of Lateral NiO/Ga2O3 FETs with Heterojunction Gate Structure (이종접합 Gate 구조를 갖는 수평형 NiO/Ga2O3 FET의 전기적 특성 연구)

  • Geon-Hee Lee;Soo-Young Moon;Hyung-Jin Lee;Myeong-Cheol Shin;Ye-Jin Kim;Ga-Yeon Jeon;Jong-Min Oh;Weon-Ho Shin;Min-Kyung Kim;Cheol-Hwan Park;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.413-417
    • /
    • 2023
  • Gallium Oxide (Ga2O3) is preferred as a material for next generation power semiconductors. The Ga2O3 should solve the disadvantages of low thermal resistance characteristics and difficulty in forming an inversion layer through p-type ion implantation. However, Ga2O3 is difficult to inject p-type ions, so it is being studied in a heterojunction structure using p-type oxides, such as NiO, SnO, and Cu2O. Research the lateral-type FET structure of NiO/Ga2O3 heterojunction under the Gate contact using the Sentaurus TCAD simulation. At this time, the VG-ID and VD-ID curves were identified by the thickness of the Epi-region (channel) and the doping concentration of NiO of 1×1017 to 1×1019 cm-3. The increase in Epi region thickness has a lower threshold voltage from -4.4 V to -9.3 V at ID = 1×10-8 mA/mm, as current does not flow only when the depletion of the PN junction extends to the Epi/Sub interface. As an increase of NiO doping concentration, increases the depletion area in Ga2O3 region and a high electric field distribution on PN junction, and thus the breakdown voltage increases from 512 V to 636 V at ID =1×10-3 A/mm.

Probiotic Effects of Lactobacillus plantarum Strains Isolated from Kimchi (김치에서 분리한 Lactobacillus plantarum 균주들의 프로바이오틱 효과)

  • Lee, Xue-Mei;Lee, Hyun Ah;Kweon, Meera;Park, Eui-Seong;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1717-1724
    • /
    • 2016
  • Probiotic effects of Lactobacillus plantarum pF1 NITE-P1462 (Lp-pF1), L. plantarum KCCM 11352P (Lp-PNU), L. plantarum CBT LP3 KCTC 10782BP (Lp-CB), and L. plantarum KCTC 3099 (Lp-3099) isolated from kimchi and Lactococcus lactis KFCC 11510P (L-lactis) isolated from Doenjang were studied. Resistance to gastric and bile acid, adhesion to intestines in colon cells, thermal stability, and antioxidative and in vitro anticancer effects in HT-29 cancer cells were evaluated. L. plantarum strains showed improved tolerance of gastric and bile acids than L-lactis. Lp-pF1 had better adhesion ability in the intestine than Lp-PNU, Lp-3099, and L-lactis. Lp-pF1 also showed better heat resistance at $50^{\circ}C$, $70^{\circ}C$, and $80^{\circ}C$ than Lp-CB, Lp-3099, and L-lactis. In addition, Lp-pF1 exhibited greater antioxidant activity by scavenging DPPH radicals or hydroxyl radicals and anticancer effects in MTT assay than others. Taken together, these results suggest that L. plantarum isolated from kimchi showed higher probiotic activities with antioxidant and anticancer properties than Lac. lactis isolated from Doenjang. Lp-pF1 revealed the best probiotic activities among L. plantarum and could be used as a promising potential probiotics.

Decomposition of Eco-friendly Liquid Propellants over Ruthenium/Al2O3/metal foam Catalysts (Ru/Al2O3/메탈폼 촉매를 이용한 친환경 액체추진제 분해)

  • Yoo, Dalsan;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.256-262
    • /
    • 2019
  • Hydroxylammonium nitrate (HAN)-based liquid propellants are attracting attention as environmentally friendly propellants because they are not carcinogens and the combustion gases have little toxicity. The catalyst used to decompose the HAN-based liquid propellant in a thruster must have both low temperature activity and high heat resistance. The objective of this study is to prepare an Ru/alumina/metal foam catalyst by supporting alumina slurry on the surface of NiCrAl metal foam using a washing coating method and then to support a ruthenium precursor thereon. The decomposition activity of a HAN aqueous solution of the Ru/alumina/metal foam catalyst was evaluated. The effect of the number of repetitive coatings of alumina slurry on the physical properties of the alumina/metal foam was analyzed. As the number of alumina wash coatings increased, mesopores with a diameter of about 7 nm were well-developed, thereby increasing the surface area and pore volume. It was optimal to repeat the wash coating alumina on the metal foam 12 times to maximize the surface area and pore volume of the alumina/metal foam. Mesopores were also well developed on the surface of the Ru/alumina/metal foam catalyst. It was found that the metal form itself without the active metal and alumina can promote the decomposition reaction of the HAN aqueous solution. In the case of the Ru/alumina/metal foam-550 catalyst, the decomposition onset temperature was significantly lowered compared with that of the thermal decomposition reaction, and ${\Delta}P$ could be greatly increased in the decomposition of the HAN aqueous solution. However, when the catalyst was calcined at $1,200^{\circ}C$, the catalytic activity was lowered inevitably because the surface area and pore volume of the catalyst were drastically reduced and Ru was sintered. Further research is needed to improve the heat resistance of Ru/alumina/metal foam catalysts.

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.

Effect of Hot Water and Microwave Heating on the Inactivation of Enterobacter sakazakii in Reconstituted Powdered Infant formula and Sunsik (열수(熱水)와 마이크로웨이브 가열이 조제분유 및 선식 용해 중 Enterobacter sakazakii 사멸에 미치는 영향)

  • Kim, Jung-Beom;Park, Yong-Bae;Lee, Myung-Jin;Kim, Ki-Cheol;Huh, Jeong-Weon;Kim, Dae-Hwan;Lee, Jong-Bok;Kim, Jong-Chan;Choi, Jae-Ho;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • Enterobacter sakazakii was initially referred to as yellow-pigmented Enterobacter cloacae and reclassified in 1980. E. sakazakii infection cause life-threatening meningitis, septicemia, and necrotizing enterocolitis in infants. Powdered infant formula (PIF) and baby foods may be the important vehicle of E. sakazakii infection. It has been reported that E. sakazakii was isolated from PIF and sunsik ingredients produced in Korea. Some infants have been fed sunsik as a weaning diet. Therefore, it is necessary that this organism should be inactivated on preparing PIF and sunsik at homes and in hospitals. The cocktail of three Korean E. sakazakii strains (human, sunsik and soil isolates) were used to investigate the inactivation of this organism with hot water at 50, 60, 65, 70 and $80^{\circ}C$ and microwave heating for 60, 75, 90, 105 and 120 sec. Reconstituted PIF and sunsikwere inoculated with cocktailed vegetative cells of E. sakazakii at 6 log CFU/mL. Thermal inactivation of vegetative cells of E. sakazakii were achieved by reconstituted PIF and sunsik with hot water at $60^{\circ}C$ or greater and with microwave heating at 2,450 MHz for 75 sec or longer. Considering that biofilm formation of E. sakazakii was adapted to survive the dry environment that is PIF and sunsik and thermal resistance increased, it is suggested that inactivation of E. sakazakii was used by hot water at $70^{\circ}C$ or greater and microwave heating for 90 sec or longer. Reconstituted PIF and sunsik were inoculated with cocktailed vegetative cells of E. sakazakii at 2 to 3 log CFU/mL to investigate the growth curve of this organism and stored at 5, 10, 15, 20, 25, 30 and $35^{\circ}C$. Viable counts slightly changed at 5, $10^{\circ}C$ during 48 h but grew at $15^{\circ}C$ or greater. Considering that E. sakazakii is able to grow in infant formula milk at refrigerator temperature, reconstituted PIF and sunsik that are not immediately consumed should be discarded or stored at refrigeration temperatures within 24 h.

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF