• Title/Summary/Keyword: Thermal Reflow

Search Result 92, Processing Time 0.018 seconds

Study on the Intermetallic Compound Growth and Interfacial Adhesion Energy of Cu Pillar Bump (Cu pillar 범프의 금속간화합물 성장과 계면접착에너지에 관한 연구)

  • Lim, Gi-Tae;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.17-24
    • /
    • 2008
  • Thermal annealing and electromigration test were performed at $150^{\circ}C$ and $150^{\circ}C,\;5{\times}10^4\;A/cm^2$ conditions, respectively, in order to compare the growth kinetics of intermetallic compound(IMC) in Cu pillar bump. The quantitative interfacial adhesion energy with annealing was measured by using four-point bending strength test in order to assess the effect of IMC growth on the mechanical reliability of Cu pillar bump. Only $Cu_6Sn_5$ was observed in the Cu pillar/Sn interface after reflow. However, $Cu_3Sn$ formed and grew at Cu pillar/$Cu_6Sn_5$ interface with increasing annealing and stressing time. The growth kinetics of total($Cu_6Sn_5+Cu_3Sn$) IMC changed when all Sn phases in Cu pillar bump were exhausted. The complete consumption time of Sn phase in electromigration condition was faster than that in annealing condition. The quantitative interfacial adhesion energy after 24h at $180^{\circ}C$ was $0.28J/m^2$ while it was $3.37J/m^2$ before annealing. Therefore, the growth of IMC seem to strongly affect the mechanical reliability of Cu pillar bump.

  • PDF

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.