• Title/Summary/Keyword: Thermal Reaction

Search Result 2,289, Processing Time 0.027 seconds

Thermal Decomposition of Tetrakis(ethylmethylamido) Titanium for Chemical Vapor Deposition of Titanium Nitride

  • Kim, Seong-Jae;Kim, Bo-Hye;Woo, Hee-Gweon;Kim, Su-Kyung;Kim, Do-Heyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.219-223
    • /
    • 2006
  • The thermal decomposition of tetrakis(ethylmethylamido) titanium (TEMAT) has been investigated in Ar and $H_2$ gas atmospheres at gas temperatures of 100-400 ${^{\circ}C}$ by using Fourier Transform infrared spectroscopy (FTIR) as a fundamental study for the chemical vapor deposition (CVD) of titanium nitride (TiN) thin film. The activation energy for the decomposition of TEMAT was estimated to be 10.92 kcal/mol and the reaction order was determined to be the first order. The decomposition behavior of TEMAT was affected by ambient gases. TEMAT was decomposed into the intermediate forms of imine (C=N) compounds in Ar and $H_2$ atmosphere, but additional nitrile (RC$\equiv$N) compound was observed only in $H_2$ atmosphere. The decomposition rate of TEMAT under $H_2$ atmosphere was slower than that in Ar atmosphere, which resulted in the extension of the regime of the surface reaction control in the CVD TiN process.

The Thermal Reaction and Oxygen Behavior in the Annealed TiN/Ti/Si Structures (열처리에 따른 TiN/Ti/Si 구조의 열적반응 및 산소원자의 거동에 관한 연구)

  • 류성용;신두식;최진성;오원웅;오재응;백수현;김영남;심태언;이종길
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.73-81
    • /
    • 1992
  • We have investigated the thermal reaction property and the oxygen behavior of TiN/Ti/Si structure after different hear treatments using x-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy measurements. During the heat treatment in N$_2$ amibient, the considerable amount of oxygen atoms incorporates into TiN/Ti/Si Structures. It is found that oxygen atoms pile up at the top surface of TiN and TiN/Ti interface, forming a compound of TiO$_2$ above $600^{\circ}C$. Inside the TiN film, the oxygen content increases as the annealing temperature increases, mostly TiO and Ti$_2$O$_3$ rather than thermodynamically stable TiO$_2$. Above the annealing temperature of 55$0^{\circ}C$, the TiSi$_2$ formation has initiated. One thing to note is that a severe blistering is observed in the sample annealed at $600^{\circ}C$, due to (1) the difference of thermal expansion coefficient between TiN and Si` (2) the compressive stress induced by the volume reduction caused by the Ti-Silicide grain while elevating temperatures.

  • PDF

The development of a thermal neutron dosimetry using a semiconductor (반도체형 열중성자 선량 측정센서 개발)

  • Lee, Nam-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.789-792
    • /
    • 2003
  • pMOSFET having 10 ${\mu}um$ thickness Gd layer has been tested to be used as a slow neutron sensor. The total thermal neutron cross section for the Gd is 47,000 barns and the cross section value drops rapidly with increasing neutron energy. When slow neutrons are incident to the Gd layer, the conversion electrons are emitted by the neutron absorption process. The conversion electrons generate electron-hole pairs in the $SiO_2$ layer of the pMOSFET. The holes are easily trapped in Oxide and act as positive charge centers in the $SiO_2$ layer. Due to the induced positive charges, the threshold turn-on voltage of the pMOSFET is changed. We have found that the voltage change is proportional to the accumulated slow neutron dose, therefore the pMOSFET having a Gd nuclear reaction layer can be used for a slow neutron dosimeter. The Gd-pMOSFET were tested at HANARO neutron beam port and $^{60}CO$ irradiation facility to investigate slow neutron response and gamma response respectively. Also the pMOSFET without Gd layer were tested at same conditions to compare the characteristics to the Gd-pMOSFET. From the result, we have concluded that the Gd-pMOSFET is very sensitive to the slow neutron and can be used as a slow neutron dosimeter. It can also be used in a mixed radiation field by subtracting the voltage change value of a pMOSFET without Gd from the value of the Gd-pMOSFET.

  • PDF

Comprehensive validation of silicon cross sections

  • Czakoj, Tomas;Kostal, Michal;Simon, Jan;Soltes, Jaroslav;Marecek, Martin;Capote, Roberto
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2717-2724
    • /
    • 2020
  • Silicon, especially silicon in the form of SiO2, is a major component of rocks. Final spent fuel storages, which are being designed, are located in suitable rock formations in the Earth's crust. Reduction of the uncertainty of silicon neutron scattering and capture is needed; improved silicon evaluations have been recently produced by the ORNL/IAEA collaboration within the INDEN project. This paper deals with the nuclear data validation of that evaluation performed at the LR-0 reactor by means of critical experiments and measurement of reaction rates. Large amounts of silicon were used both as pure crystalline silicon and SiO2 sand. The critical moderator level was measured for various core configurations. Reaction rates were determined in the largest core configuration. Simulations of the experimental setup were performed using the MCNP6.2 code. The obtained results show the improvement in silicon cross-sections in the INDEN evaluations compared to existing evaluations in major libraries. The new Thermal Scattering Law for SiO2 published in ENDF/B-VIII.0 additionally reduces the discrepancy between calculation and experiments. However, an unphysical peak is visible in the neutron spectrum in SiO2 obtained by calculation with the new Thermal Scattering Law.

A Study on the Deintercalation Reaction of Li-Graphite Intercalation Compounds

  • O, Won Cheon;Kim, Beom Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.101-104
    • /
    • 2000
  • Li-graphite intercalation compounds (GICs), synthesized at elevated temperature and pressure, were allowed to decompose spontaneously in the atmosphere. The decomposition processes were analyzed by of X-ray diffraction, DSC analysis, FT-IR measurements, UV/VIS spectrophotometry. The deintercalation reaction of the Li-GICs ceased after 6 weeks and only the residual compounds could be observed. A strong exothermic reaction was observed at 300 $^{\circ}C$ in thermal decomposition, and relatively stable decomposition curves were formed. A few endothermic curves have been observed at 1000 $^{\circ}C.$ After 6 weeks deintercalation reaction time of GICs, many exothermic and endothermic reactions were accompanied at the same time. In addition the reactions of the functional groups such as aromatic rings, nitrogen, $-CH_3$, $-CH_2$ etc. of GDIC obtained by the above reaction were confirmed by FT-IR spectrum. UV/VIS spectrophotometric measurement clearly shows the formation of a minimum energy value ($R_{min}$) for the compounds between Li-GICs as a starting material and Li-GDICs obtained until after 3 weeks of the deintercalation reaction, while they were no clear energy curves from 4 weeks of reaction time, because of the formation of the graphite structure, of high stages and of the Li compounds surrounding the graphite in the deintercalation reaction.

Effects of W Contents in Co Matrix of the Thermal Sprayed WC-Co on the Corrosion Behavior in Molten Zinc

  • Seong, Byeong-Geun;Hwang, Sun-Young;Kim, Kyoo-Young;Lee, Kee-Ahn
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.147-153
    • /
    • 2007
  • This study sought to investigate the reaction of Co-binder containing tungsten with molten zinc. Four kinds of Co-W alloys (pure, 10%W, 20%W, 30%W) were prepared using the powder metallurgy method. The specimens were immersion-tested in molten pure zinc baths at $460^{\circ}C$. To evaluate the corrosion property in molten zinc, the weight loss of the specimen was measured after the immersion tests at different immersion times (10~300 min.). Co-10%W alloys, compared with pure cobalt, showed no effect of tungsten addition on the reaction rate in molten zinc. The relationship between the weight loss and the square root of immersion period represents a straight line in both pure cobalt and Co-10%W alloy. The Co-Zn reaction layer in Co- 1O%W alloy consists of $\gamma2$, $\gamma1$, $\gamma$ and ($\beta1$ phases. The rate of weight loss significantly increases and the weight loss behavior is not well accord with the linear relationship as the tungsten content in the Co-W alloy increases. The $\beta1$ layer was not formed on the Co-20%W alloy and neither was a stable Co-Zn intermetallic compound layer found on the Co-30%W alloy. The main cause of increase in reaction rate with increasing tungsten content is related with the instability of the Co-Zn reaction phases as seen on micro-structural analysis.

Reaction Kinetic Study on Pyrolysis of Waste Polystyrene using Wetted Column Reactor (Wetted Column 반응기를 이용한 폴리스티렌 열분해 반응속도론적 연구)

  • You, Young Gil;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae;Choi, Cheong Song
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.535-539
    • /
    • 2008
  • Conversion to oil, yield of styrene and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer were affected by residue formed during thermal degradation. Also, control of reaction temperature had a difficulty at the first stage. Thus, new reaction system using wetted-wall type reactor was proposed and examined on various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimun condition was obtained from continuous thermal degradation using wetted-wall type reactor and reaction kinetic study was carried out at new type reactor.

The Effect of Solvents on the Synthesis of Polyamideimides from Rosin-Maleic Anhydride Adduct and Diisocyanate (로진-말레산 부가물과 디이소시아네이트로부터 폴리아미드이미드의 합성시 용제의 효과)

  • Kim, Jum-Sik;Choi, Byung-Oh;Choi, Hyeong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-82
    • /
    • 1990
  • Rosin-maleic anhydride adduct (RMA) was synthesized from rosin and maleic anhydride. The polyamideimides were obtained by reacting the adduct with two aromatic diisocyanates using sodium methoxide as catalyst. The yield and the inherent viscosity of polymers obtained by the reaction in NMP solvent were low because of the possible reaction of NMP solvent with diisocyanate monomer. The polymers were synthesized in solvent mixture of NMP and cosolvents such as xylene, acetophenone, benzonitrile, and nitrobenzene in order to minimize the side reaction of NMP with diisocyanates. The yield of polymer obtained by the reaction in NMP-nonpolar cosolvent mixtures was about 70% and that obtained by the reaction in NMP-polar cosolvent mixtures was over 90%, respectively. The polymers were either amorphous or poorly cystalline, and soluble only in highly polar solvents. The inherent viscosity of polymers ranges from 0.12-0.26dl/g. The results of thermal analysis showed that the polymer had good thermal stability with initial decomposition temperature over $330^{\circ}C$.

  • PDF

Electrochemical Reaction Mechanism with Variation of Pyrite (FeS2) Particle Size for Thermal Battery (열전지용 황철석(FeS2) 입자크기 변화에 따른 전기화학반응 메커니즘)

  • Park, Byeong June
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.246-252
    • /
    • 2017
  • Pulverized $FeS_2$ (pyrite) gives different discharge test results with as-received $FeS_2$ electrodes. The as-received $FeS_2$ electrode shows three voltage plateaus during the discharge test. However, the ball-milled $FeS_2$ electrode shows two voltage plateaus. To interpret this result, the effect of $FeS_2$ particle size on electrochemical reactions is investigated by unit cell discharge tests, SEM and XRD. As a result, it is found that the transition reaction product ($Li_2+xFe+xS_2$) of $FeS_2$ explains the difference. The as-received $FeS_2$ reacts according to three reaction steps ($FeS_2{\rightarrow}Li_3Fe_2S_4{\rightarrow}Li_2+xFe_1+xS_2{\rightarrow}LiFe_2S_4$). However, ball-milled $FeS_2$ reacts without the $Li_2+xFe_1+xS_2$ stage. In this study, this result is explained by the difference in electrochemical reaction mechanism. The as-received $FeS_2$ has a larger radius than the ball-milled $FeS_2$. Therefore, the lithium ion has to diffuse into the $FeS_2$ unreacted core, and $Li_2+xFe_1+xS_2$, the transition reaction product of as-received $FeS_2$, is formed during this stage.

Biodiesel Production from Waste Oils Mixed with Animal Tallows and Vegetable Oil by Transesterification Using Ultrasonic Irradiation (초음파를 이용한 동식물성 혼합 폐유지로부터 바이오디젤 제조)

  • Chung, Kyong-Hwan;Park, Byung-Geon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.487-492
    • /
    • 2013
  • Transesterifications of waste oils mixed with animal tallows and vegetable oil by ultrasonic energy were examined over various catalysts for biodiesel production. Reaction activities of the transesterification were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties of feedstock and products were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The highest fatty acid methyl ester (FAME) yield was obtained on the potassium hydroxide catalyst in the transesterification by ultrasonic irradiation. The effective reaction conditions by ultrasonic energy were 0.5 wt% catalyst loading and 6:1 molar ratio of methanol to the mixed oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The highest yields of FAME were obtained as 80% in 5 min and the reaction equilibrium reached at that time.