• Title/Summary/Keyword: Thermal Property

Search Result 1,762, Processing Time 0.029 seconds

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.

Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol

  • Kwak, Ki-Yuel;Kim, Chong-Youp
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.35-40
    • /
    • 2005
  • Nanofluid is a novel heat transfer fluid prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. In this research we have considered the rheological properties of nanofluids made of CuO particles of 10-30nm in length and ethylene glycol in conjunction with the thermal conductivity enhancement. When examined using TEM, individual CuO particles have the shape of prolate spheroid of the aspect ratio of 3 and most of the particles are under aggregated states even after sonication for a prolonged period. From the rheological property it has been found that the volume fraction at the dilute limit is 0.002, which is much smaller than the value based on the shape and size of individual particles due to aggregation of particles. At the semi-dilute regime, the zero shear viscosity follows the Doi-Edwards theory on rodlike particles. The thermal conductivity measurement shows that substantial enhancement in thermal conductivity with respect to particle concentration is attainable only when particle concentration is below the dilute limit.

Treatment of Stainless Steel Cladding in Pressurized Thermal Shock Evaluation: Deterministic Analyses

  • Changheui Jang;Jeong, lll-Seok;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.132-144
    • /
    • 2001
  • Fracture mechanics is one of the major areas of the pressurized thermal shock (PTS) evaluation. To evaluate the reactor pressure vessel integrity associated with PTS, PFM methodology demands precise calculation of temperature, stress, and stress intensity factor for the variety of PTS transients. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property, at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, treatment schemes to evaluate stress and resulting stress intensity factor for RPV with stainless steel clad are introduced. For a reference transient, the effects of clad thermal conductivity and thermal expansion coefficients on deterministic fracture mechanics analysis are examined.

  • PDF

Thermal Modeling of Comet-Like Asteroids

  • Park, Yoonsoo Bach;Ishiguro, Masateru;Usui, Fumihiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.81.4-82
    • /
    • 2016
  • Recent analysis on asteroidal thermophysical property revealed that there is a tendency that their thermal inertia decrease with their sizes at least for main belt asteroids. However, little is known about the thermal properties of comet-like bodies. In this work we utilized a simple thermophysical model to calculate the thermal inertia of a bare nucleus of comet P/2006 HR30 (Siding Spring) and an asteroid in comet-like orbit 4015 Wilson-Harrington from AKARI observation data. It is also shown that the determination of their thermal inertia is very sensitive to their spin vector, while the diameter is rather easy to be constrained to a certain range by combining multi-wavelength observational data. Thus, we set diameter and hence the geometric albedo as fixed parameters, and inferred the spin vector and thermal inertia of the targets. Further detailed analyses on these cometary bodies will shed light on our understanding of the detailed surfacial characteristics of them.

  • PDF

Investigation into the Thermal Stability of Fluoropolymer Coating for Heat-Resistant Application (내열성 불소수지 코팅막의 열 안정성에 관한 연구)

  • Cho, Hey-Jin;Ryu, Ju-Hwan;Byun, Doo-Jin;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.96-101
    • /
    • 2005
  • Fluoropolymer of PTFE and PFA etc. is a heat resistance polymeric material that it is known as that maximum continuous use temperature reaches for 260 $^{\circ}C$. It was observed that these polymers had the enough thermal stability so enough that it was kept by thermal aging of 280 $^{\circ}C$/7 weeks too in this study. However, such thermal stability means that bulk material property is kept such as mechanical strength, melting point and initial pyrolysis temperature etc. If these polymers are evaluate by coating property such as surface contact angle, surface morphology, surface scratch, thing that heat resistance is not enough was confirmed in this study. Thermal aging of flouropolymer coating was achieved by gear aging oven that the exchange rate of air was controlled, and the analysis results were indicating serious damage of surface morphology and adhesive strength on metal substrate.

Experimental investigation on the variation of thermal conductivity of soils with effective stress, porosity, and water saturation

  • Lee, So-Jung;Kim, Kyoung-Yul;Choi, Jung-Chan;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.771-785
    • /
    • 2016
  • The thermal conductivity of soils is an important property in energy-related geotechnical structures, such as underground heat pumps and underground electric power cable tunnels. This study explores the effects of geotechnical engineering properties on the thermal conductivity of soils. The thermal conductivities of quartz sands and Korean weathered silty sands were documented via a series of laboratory experiments, and its variations with effective stress, porosity, and water saturation were examined. While thermal conductivity was found to increase with an increase in the effective stress and water saturation and with a decrease in porosity, replacing air by water in pores the most predominantly enhanced the thermal conductivity by almost one order of magnitude. In addition, we have suggested an improved model for thermal conductivity prediction, based on water saturation, dry thermal conductivity, saturated thermal conductivity, and a fitting parameter that represents the curvature of the thermal conductivity-water saturation relation.

Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.105-121
    • /
    • 2014
  • A fundamental limitation of steel structures is the decrease in their load-bearing capacity at high temperatures in fire situations such that structural members may require some additional treatment for fire resistance. In this regard, this paper evaluates the structural stability of fire-resistant steel, introduced in the late 1999s, through tensile coupon tests and proposes some experimental equations for the yield stress, the elastic modulus, and specific heat. The surface temperature, deflection, and maximum stress of fire-resistant steel H-section columns were calculated using their own mechanical and thermal properties. According to a comparison of mechanical properties between fire-resistant steel and Eurocode 3, the former outperformed the latter, and based on a comparison of structural performance between fire-resistant steel and ordinary structural steel of equivalent mechanical properties at room temperature, the former had greater structural stability than the latter through $900^{\circ}C$.

Comfort Properties of Silk#x00B7;Rayon-Cellulose Fiber Union Fabrics (견·인견과 셀룰로오스섬유 교직물의 쾌적성능 평가)

  • Bae, Young Hee;Yun, Chang Sang;Jeong, Woon Seon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.4
    • /
    • pp.795-801
    • /
    • 2016
  • This study was conducted to suggest the best union fabric to combine with cellulose fiber for summer and in-between seasons. Four types of union fabric, viz. silk/flax, silk/cotton, rayon/flax and rayon/cotton, were used as sample fabrics after weaving them in a local textile factory. The air permeability, moisture regain, water absorption, water vapor permeability and thermal insulation of the samples were tested. The results are as follows. The rayon/flax union fabric is the most suitable for summer clothes due to its having the best comfort property of air and water vapor permeability, and moisture and water absorption. For in-between seasons, it is recommended to use the silk/cotton union fabric because of its good thermal insulation properties.

Analysis on the Physical Property of Nylon High Tenacity Coarse Yarn and Fabric for Military and Technical Textiles (군용 및 산자용 나일론 고강력 태섬사 및 후직물의 물성 분석)

  • Kim, Seung-Jin;Kim, Sang-Ryong;Lee, Do-Hyun;Choi, Woo-Hyuk
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.43-48
    • /
    • 2009
  • This paper surveys the mechanical properties of nylon high tenacity coarse yarn and fabric for military and technical textiles. For this purpose, 6 kinds of yarns and 2 kinds of fabrics are prepared. The yarn physical properties such as yarn count, thermal shrinkages, and tensile properties are measured and discussed with the characteristics of the domestic and imported yarns. And, the physical and mechanical properties of these fabrics are also measured and discussed with the usage of these fabrics in the military and technical textiles fields. Hereafter, the differences of physical properties between domestic and foreign yarn specimens for high functional military and technical fabrics are estimated through this study.

Study about Plastic Polymer bearing Triazine Group as Optical Material (광학재료로서 triazine기를 갖는 플라스틱 고분자에 대한 연구)

  • Lee, Yong-Hee;Kim, Jea-Jong;Suh, Myung-Gyo;Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.171-176
    • /
    • 2003
  • The poly(triazine bissulfide) synthesized from 6-dibutylamino-1,3,5-triazine-2,4-dithiol with bis(4-chloro-3-nitrophenyl) sulfone in the presence of the phase transfer catalyst, the maximum algebra viscosity (0.57 dL/g) is stable at reaction temperature of $60^{\circ}C$ overall. We could not acquire the good result about solubility, thermal property, and molecular weight to make cast film, we made base for the synthesis of functionalization polymer material.

  • PDF