• Title/Summary/Keyword: Thermal Profile

Search Result 474, Processing Time 0.029 seconds

Investigation of school building microclimate using advanced energy equipment: Case study

  • Alwetaishi, Mamdooh;Alzaed, Ali;Sonetti, Giulia;Shrahily, Raid;Jalil, Latif
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.10-20
    • /
    • 2018
  • Buildings are responsible of major energy consumption globally. In addition, they are linked to thermal comfort. The need to provide comfort becomes more crucial in schools as they are the place where students learn, and develop their skills. This research aims to investigate the energy responsiveness of new and traditional school building design, where major variation in form, amount of external walls and glazing are different. The research focused on indoor microclimate condition of selected schools in the city of Jeddah where the climate is hot and humid using advanced tools for monitoring. The research uses advanced energy equipment to measure several aspects such as floor temperature, roof temperature, globe temperature and other factors which can lead to predictable thermal comfort of users. The findings suggest that a larger area of glazing shielded from sunlight has a greater influence on both indoor condition and general thermal sensation. The finding also suggests that the glazing ratio is a major contributor on indoor thermal pattern which can result in an increase in temperature profile between from $7-10^{\circ}C$. The findings of this research can assist in the improvement in the design of the prototype school building in hot and humid climate.

Thermal Stability Enhancement of Nickel Monosilicides by Addition of Iridium (이리듐 첨가에 의한 니켈모노실리사이드의 고온 안정화)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.571-577
    • /
    • 2006
  • We fabricated thermal evaporated 10 nm-Ni/(poly)Si and 10 nm-Ni/1 nm-Ir/(poly)Si films to investigate the thermal stability of nickel monosilicide at the elevated temperatures by rapid annealing them at the temperatures of $300{\sim}1200^{\circ}C$ for 40 seconds. Silicides for salicide process was formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester is used for sheet resistance. Scanning electron microscope and field ion beam were employed for thickness and microstructure evolution characterization. An x-ray diffractometer and an auger depth profile scope were used for phase and composition analysis, respectively. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1200^{\circ}C$ and $800^{\circ}C$, respectively, while the conventional nickel monosilicide showed low resistance below $700^{\circ}C$. The grain boundary diffusion and agglomeration of silicides led to lower the NiSi stable temperature with polycrystalline silicon substrates. Our result implies that our newly proposed Ir added NiSi process may widen the thermal process window for nano CMOS process.

Numerical Analysis on the Design of a Thermal Mass Air Flow Sensor with Various Heating Modes (가열모드에 따른 열식 질량유량센서의 설계 해석)

  • Jeon, Hong-Kyu;Lee, Joon-Sik;Park, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.876-883
    • /
    • 2007
  • Numerical simulations are conducted for the design of a micro thermal mass air flow sensor (MAFS), which consists of a microfabricated heater and thermopiles on the silicon-nitride ($Si_3N_4$) thin membrane structure. It is important to find the proper locations of these thermal elements in the design of MAFS with improved sensitivity. Three heating modes of the micro-heater are considered: constant temperature, constant power and heating pulses. The analyses are focused on the membrane temperature profile near the sensing section. Considered are the practical flow velocities, ranging from 3 m/s to 35 m/s, and the corresponding Reynolds numbers from 1000 to 10000. The results show that one of optimum sensing locations is about $100{\mu}m$ away from the microheater. It is concluded that the heating mode and configurations of thermal elements are the main factors for the MAFS with higher sensitivity.

Thermal Energy Recovery from Waste Heat of an I.C. Engine for Agriculture(II) -System Simulation and Stability Test- (농용(農用) 내연기관(內燃機關) 폐열(廢熱)의 열(熱)에너지 회수(回收)(II) -시스템 Simulation과 안정성(安定性) 실험(實驗)-)

  • Suh, S.R.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.1
    • /
    • pp.6-13
    • /
    • 1987
  • A mathematical model for the waste heat recovery system for an engine was developed. The model based on the experimental data reported before was validated and was used to predict the waste heat recovery and recoverable heat of the engine at various operating conditions of the engine and the system. The model was also used to determine flow rates of the circulating water in the system for a certain temperature increment of the water at various operating conditions of the engine to give basic data to design the system. Stability of the system performance was tested on subjects of vapor lock problem, thermal characteristics of the thermostatic valve, and temperature variation of the circulating water in the engine and fuel consumption of the engine during each mode of the system operation and its change into the other. The test showed that the system operation was stable enough. Temperature profile in the thermal energy storage (TES) was observed during storing thermal energy, and thermal stratification in the TES was well formed acceptable to be used in the system. Finally a scheme to automatize the system was suggested.

  • PDF

The Unsteady 2-D Numerical Analysis in a Horizontal Pipe with Thermal Stratification Phenomena (열성층현상이 존재하는 수평배관내에서의 비정상 2차원 수치해석)

  • Youm, Hag-Ki;Park, Man-Heung;Kim, Sang-Nung
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.27-35
    • /
    • 1996
  • In this paper, an unsteady analytical model for the thermal stratification in the pressurizer surge line of PWR plant has been proposed to investigate the temperature profile, flow characteristics, and thermal stress in the pipe. In this model, the interface level, between hot and cold fluid, is assumed to be a function of time while the other models had developed for time independent or steady state. The dimensionless governing equations are solved by using a SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The analysis result for an example shows that the maximum dimensionless temperature difference is about 0.78 between hot and cold sections of pipe wall and the maximum thermal stress by thermal stratification is calculated about 276 MPa at the dimensionless time 27.0 under given conditions.

  • PDF

Cross-section Morphology and Surface Roughness of an Article Manufactured by Material Extrusion-type 3D Printing according to the Thermal Conductivity of the Material

  • Woo, In Young;Kim, Do Yeon;Kang, Hong Pil;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.46-50
    • /
    • 2020
  • Material extrusion (ME)-type 3D printing is the most popular among the 3D printing processes. In this study, the cross-section morphologies of ME-type 3D printing manufactured specimens were observed with respect to the thermal properties of the material. The cross-section morphology of a specimen is related to the deposition strength, and the outside profile of the cross-section is related to the surface roughness. The filaments used in this study, with different thermal conductivities, were the acrylonitrile-butadiene-styrene (ABS), the high impact polystyrene (HIPS), the glycol-modified polyethylene terephthalate (PETG), and the polylactic acid (PLA). The cross-sections and the surfaces of the 3D manufactured specimens were examined. In ME-type 3D printing, the filaments are extruded through a nozzle and they form a layer. These layers rapidly solidify and as a result, they become a product. The thermal conductivity of the material influences the cooling and solidification of the layers, and subsequently the cross-section morphology and the surface roughness.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

Thermal Stability Improvement of Ni-silicide Using Ni-Co alloy for Nano-Scale CMOSFET Technology (나노급 CMOSFET을 윈한 Ni-Co 합금을 이용한 Ni-silicide의 열안정성 개선)

  • Park, Kee-Young;Zhang, Ying-Ying;Jung, Soon-Yen;Li, Shi-Guang;Zhun, Zhong;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.27-28
    • /
    • 2007
  • In this paper, Ni-Co alloy was used for improvement of thermal stability of Ni silicide. The proposed Ni/Ni-Co structure exhibited wide temperature window of rapid thermal process. Sheet resistance as well as cross-sectional profile showed stable characteristics in spite of high temperature annealing up to $700^{\circ}C$ for 30min. Therefore, the proposed Ni/Ni-Co structure is highly promising for highly thermal immune Ni silicide for nano-scale CMOSFET technology.

  • PDF

Study on the Thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-wait-search method) & Isothermal Conditions (ARC(Heat-wait-search method)와 Isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Seunghee;Kwon, Kuktae;Jeon, Yeongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • The thermal property is one of the most important characteristics in the field of energetic materials. Because energy materials release decomposition heat, differential scanning calorimetry (DSC) is frequently used for thermal analysis. However, thermodynamic events, such as melting can interfere with DSC kinetic analysis. In this study, we use isothermal mode for DSC measurement to avoid thermodynamic issues. We also merge accelerating rate calorimetry(ARC) data with DSC data to obtain a robust prediction results for small scale samples and for large scale samples as well. For the thermal property prediction, advanced kinetics and technology solutions(AKTS) programs are used.

REDUCED DIFFERENTIAL TRANSFORM FOR THERMAL STRESS ANALYSIS UNDER 2-D HYPERBOLIC HEAT CONDUCTION MODEL WITH LASER HEAT SOURCE

  • SUTAR, CHANDRASHEKHAR S.;CHAUDHARI, KAMINI K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.54-65
    • /
    • 2021
  • In this study, a two-dimensional thermoelastic problem under hyperbolic heat conduction theory with an internal heat source is considered. The general solution for the temperature field, stress components and displacement field are obtained using the reduced differential transform method. The stress and displacement components are obtained using the thermal stress function in the reduced differential transform domain. All the solutions are obtained in the form of power series. The special case with a time-dependent laser heat source has been considered. The problem is considered for homogeneous material with finite rectangular cross-section heated with a non-Gaussian temporal profile. The effect of the heat source on all the characteristics of a material is discussed numerically and graphically for magnesium material taking a pulse duration of 0.2 ps. This study provides a powerful tool for finding the solution to the thermoelastic problem with less computational work as compared to other methods. The result obtained in the study may be useful for the investigation of thermal characteristics in engineering and industrial applications.