• 제목/요약/키워드: Thermal Power Plants

검색결과 527건 처리시간 0.03초

Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle

  • Norouzi, Nima;Fani, Maryam;Talebi, Saeed
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.677-687
    • /
    • 2021
  • The tendency to renewables is one of the consequences of changing attitudes towards energy issues. As a result, solar energy, which is the leader among renewable energies based on availability and potential, plays a crucial role in full filing global needs. Significant problems with the solar thermal power plants (STPP) are the operation time, which is limited by daylight and is approximately half of the power plants with fossil fuels, and the capital cost. Exergy analysis survey of STPP hybrid with PCM storage carried out using Engineering Equation Solver (EES) program with genetic algorithm (GA) for three different scenarios, based on eight decision variables, which led us to decrease final product cost (electricity) in optimized scenario up to 30% compare to base case scenario from 28.99 $/kWh to 20.27 $/kWh for the case study. Also, in the optimal third scenario of this plant, the inner carbon dioxide gas cycle produces 1200 kW power with a thermal efficiency of 59% and also 1000 m3/h water with an exergy efficiency of 23.4% and 79.70 kg/h with an overall exergy efficiency of 34% is produced in the tetrageneration plant.

Numerical Simulation of the Water Temperature in the Al-Zour Area of Kuwait

  • Lee, Myung Eun;Kim, Gunwoo
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.334-343
    • /
    • 2019
  • The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.

공기구동밸브의 열노화에 따른 성능평가 (Performance Analysis of Air Operated Valve by Thermal Aging)

  • 이선기
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.93-98
    • /
    • 2015
  • Nuclear power plants has a number of valves, which are operating at a high temperature-high pressure and radiation environment conditions. Nevertheless, it is important to maintain the reliability of the valves to ensure safe operation of the nuclear power plant. However, the aging of the valves by increasing of years of plant operation and the system transients due to the sudden load change are working the failures of the reliability of the valve. In this paper, we evaluate experimentally the performance change according to the thermal aging of the valve. Results show that the valve stem and the actuator leakages were enlarged by the thermal aging.

원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가 (Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants)

  • 김종성;이영주;오영진
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.11-17
    • /
    • 2015
  • 최근에 원자력 발전소 안전 3 등급 배관에 적용되고 있는 고밀도 폴리에틸렌 배관은 융착표면을가열한 후 축방향으로 가압하는 열 융착 공정을 이용하여 맞대기 융착되어진다. 이러한 열 융착공정은 맞대기 융착부에 비드 형상을 발생시킨다. 이러한 비드 형상의 응력집중에 기인하여 피로수명이 줄어들 수 있다. 따라서 피로거동에 미치는 맞대기 열 융착부 비드의 효과를 고찰하는 것이 필요하다. 본 연구에서는 응력 제어 조건 하의 인장 피로 시험과 유한요소 탄성응력 해석을 수행하여 맞대기 열 융착부의 인장 피로 거동을 고찰하였다. 고찰 결과, 중주기 및 고주기 피로 영역에선 피로수명에 미치는 비드의 영향이 미미한 반면 저주기 피로 영역에선 비드의 존재가 피로 수명을 감소시킴을 확인하였다.

다중화 디지털 여자 시스템 개발과 발전소 적용에 관한 연구 (A Study on the Development and the Application of Reducdant Digital Excitation System for the Power Plants)

  • 김경철;임익헌
    • 조명전기설비학회논문지
    • /
    • 제15권5호
    • /
    • pp.97-107
    • /
    • 2001
  • 화력발전소, 수력발전소, 그리고 펄프 및 제지 산업분야 발전 프랜트들은 노후화된 발전기 여자시스템으로 인해서 많은 보수 정비업무에 직면해 있다. 이러한 노후 발전설비의 수명 연장을 위해 한전 전력연구원 3중화 디지털 정지형 여자시스템을 개발하였다. 이 논문에서는 3중화 정지형 여자시스템을 구성하는 전력전자 제어 소자(싸이리스터, GTO), 여자 변압기, 3중화 제어시스템의 설계개념과 현장 적용 결과에 대해서 기술하고자 한다.

  • PDF

EXCITATION SYSTEM MODERNIZATION OF THERMAL POWER PLANT

  • Kim, Chan-Ki;Kim, Jang-Mok;Rhew, Ho-Sun
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2024-2026
    • /
    • 1998
  • Many power plants built 20-30 years ago are facing problems associated with the excitation system used for controlling generator output voltage. After years of reliable operation, generation is experiencing increased down time due to maintenance associated with the exciting excitation equipment. Reliability of the excitation system has become an issue, especially where many of these generation plants may be critical to the internal processes used for manufacturing. Wear out mechanisms such as those associated with the wire wound rheostat the electromechanical voltage regulator, insulation failures of the rotating exciter and commutator deterioration have become real problems typical of many older installations. These are some of the issues that are affecting system reliability for older power plants. This paper will address typical problems associated with the old excitation systems and the justification for a replacement static excitation system used in many Paper Mills.

  • PDF

석탄화력발전대비 LNG복합화력발전 환경성 및 경제성 비용분석에 관한 연구 (A Study on Environmental and Economic Cost Analysis of Coal Thermal Power Plant Comparing to LNG Combined Power Plant)

  • 김종원
    • 아태비즈니스연구
    • /
    • 제9권4호
    • /
    • pp.67-84
    • /
    • 2018
  • This study is about comparing coal thermal plant to LNG combined power plant in respect of environmental and economic cost analysis. In addition sensitive analysis of power cost and discount rate is conducted to compare the result of change in endogenous and exogenous variable. For environmental assessment, when they generate 10,669GWh yearly, coal thermal power plant emits sulfur oxides 959ton, nitrogen oxide 690ton, particulate matter 168ton and LNG combined power plant emits only nitrogen oxide 886ton respectively every year. Regarding economic cost analysis on both power plants during persisting period 30 years, coal thermal power plant is more cost effective 4,751 billion won than LNG combined taking in account the initial, operational, energy and environmental cost at 10,669GWh yearly in spite of only LNG combined power plant's energy cost higher than coal thermal. In case of sensitive analysis of power cost and discount rate, as 1% rise or drop in power cost, the total cost of coal thermal power plant increases or decreases 81 billion won and LNG combined 157 billion won up or down respectively. When discount rate 1% higher, the cost of coal thermal and LNG combined power plant decrease 498 billion won and 539 billion won for each. When discount rate 1% lower, the cost of both power plant increase 539 billion won and 837 billion won. With comparing each result of change in power cost and discount rate, as discount rate is weigher than power cost, which means most influential variable of power plan is discount rate one of exogenous variables not endogenous.

Bagged Auto-Associative Kernel Regression-Based Fault Detection and Identification Approach for Steam Boilers in Thermal Power Plants

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1406-1416
    • /
    • 2017
  • In complex and large-scale industries, properly designed fault detection and identification (FDI) systems considerably improve safety, reliability and availability of target processes. In thermal power plants (TPPs), generating units operate under very dangerous conditions; system failures can cause severe loss of life and property. In this paper, we propose a bagged auto-associative kernel regression (AAKR)-based FDI approach for steam boilers in TPPs. AAKR estimates new query vectors by online local modeling, and is suitable for TPPs operating under various load levels. By combining the bagging method, more stable and reliable estimations can be achieved, since the effects of random fluctuations decrease because of ensemble averaging. To validate performance, the proposed method and comparison methods (i.e., a clustering-based method and principal component analysis) are applied to failure data due to water wall tube leakage gathered from a 250 MW coal-fired TPP. Experimental results show that the proposed method fulfills reasonable false alarm rates and, at the same time, achieves better fault detection performance than the comparison methods. After performing fault detection, contribution analysis is carried out to identify fault variables; this helps operators to confirm the types of faults and efficiently take preventive actions.

화력발전소의 발전기 보호계전기의 정정에 관한 연구 (A Study on Generator Protection Relay Setting in Thermal Power Plant)

  • 최순철;이경민;박철원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.569-570
    • /
    • 2015
  • Power plants by coal-fired generators in 00 Thermal Power site Division came the most developed environmental system in the world. This paper examined with respect to the setting of the first grade protection relay.

  • PDF

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.