• 제목/요약/키워드: Thermal Power Plant

Search Result 1,088, Processing Time 0.029 seconds

Web-Based On-Line Thermal Performance Analysis System for Turbine Cycle of Nuclear Power Plant (온라인 웹기반 원전 터빈 사이클 열성능 분석 시스템)

  • Choi KiSang;Choi KwangHee;Ji MoonHak;Hong SeungYeol;Kim SeongKun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.409-416
    • /
    • 2005
  • We need to develop a on-line thermal performance analysis system for nuclear power plant to determine performance status and heat rate of turbine cycle. We have developed PERUPS(PERformance Upgrade System) to aid the effective performance analysis of turbine cycle. Procedures of performance calculation are improved using several adaptations from standard calculation algorithms based on PTC(Performance Test Code). Robustness in the on-line performance analysis is increased by verification & validation scheme for measured input data. The system also provides useful web interfaces for performance analysis such as graphic heat balance of turbine cycle and components, turbine expansion lines, automatic generation of analysis report. The system was successfully applied for YongGwang nuclear plant unit #3,4.

Technical and Economic Assessment of CO2 Transportation Options for Large-scale Integrated Carbon Capture & Sequestration(CCS) Project in South Korea

  • Lee, Ji Hyun;Kim, Beom-Ju;Kwak, No Sang;Shim, Jae-Goo;Shin, Su Hyun;Hwang, Sun-Na;Lee, Jung-Hyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In order to examine the feasibility of Carbon Capture & Sequestration, a major technological strategy for the national goal of greenhouse gas reduction, this paper studies the various methods and corresponding costs for the transportation of $CO_2$ captured at the domestic thermal power plants, as well as performing comparative analysis with overseas CCS demonstration projects. It is predicted that the investment cost would be about 98 million USD when the using land-based pipelines to transport captured $CO_2$ from the thermal power plant located in the south coast. And using marine-based offshore pipelines, it will cost about twice the amount. When the captured $CO_2$ is transported from the power plant in the west coast instead, the cost is expected to increase substantially due to the transportation distance to the storage site being more than double to that of the south coast power plant case.

A Study on the Design Concept & Construction Method of Office Building with Stacks at Thermal Power Plant (화력발전소 연돌통합형 종합사무동의 설계개념과 시공공법 연구)

  • Kim, Si-Hyun;Choi, Jang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.677-686
    • /
    • 2016
  • A thermal power plant is the first CFBC (Circulating Fluidized Bed Combustion) power plant consisting of 2 boilers-1 turbine. The optimal height of a stack needs to be approximately 156 meters in the case of this thermal power plant; however, the thermal power plant sites satisfy a function and reduce the construction cost by using mountains in the sites after cutting the ground and locating an integrated office and chimney at an altitude of 70 meters thereby lowering the height of the stack to 86 meters. In addition, the integrated office, which has a combined stack style with a unique design, is constructed by connecting with 2 stacks and disposing the office and an observatory in the space between them. Therefore, this study examined the design concept that fulfils the structural, functional, and aesthetic factors, harmoniously by joining the integrated office and the stack, which are disparate, and investigated special construction methods (Slip Form, Steel Inner Flue & Lift-up) through which heterogeneous architectures are structurally, functionally, and aesthetically constructed.

Fluid Flow and Heat Transfer Inside a Solar Chimney Power Plant

  • Gholamalizadeh, Ehsan;Chung, Jae Dong
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2018
  • The flow and heat transfer characteristics inside a solar chimney power plant system are analyzed in this article. 3-D model with the $k-{\varepsilon}$ turbulence closure was developed. In this model, to solve the radiative transfer equation the discrete ordinates radiation model was implemented, using a two-band radiation model. To simulate radiation effects from the sun's rays, the solar ray tracing algorithm was coupled to the calculation via a source term in the energy equation. Simulations were carried out for a system with the geometry parameters of the Manzanares power plant. Based on the numerical results, the velocity and temperature distributions were illustrated and the results were validated by comparing with experimental data of the Manzanares prototype power plant. Moreover, temperature profile of the ground surface of the system was illustrated.

  • PDF

Thermal-Mixing Analyses for Safety Injection at Partial Loop Stagnation of a Nuclear Power Plant

  • Hwang, Kyung-Mo;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1380-1387
    • /
    • 2003
  • When a cold HPSI (High pressure Safety Injection) fluid associated with an overcooling transient, such as SGTR (Steam Generator Tube Rupture), MSLB (Main Steam Line Break) etc., enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters the downcomer of the reactor pressure vessel, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. As general thermal-hydraulic system analysis codes cannot properly predict the thermal stratification phenomena, RG 1.154 requires that a detailed thermal-mixing analysis of PTS (pressurized Thermal Shock) evaluation be performed. Also. previous PTS studies have assumed that the thermal stratification phenomena generated in the stagnated loop side of a partially stagnated primary coolant loop are neutralized in the vessel downcomer by the strong flow from the unstagnated loop. On the basis of these reasons, this paper focuses on the development of a 3-dimensional thermal-mixing analysis model using PHOENICS code which can be applied to both partial and total loop stagnated cases. In addition, this paper verifies the fact that, for partial loop stagnated cases, the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is almost neutralized by the strong flow of the unstagnated loop but is not fully eliminated.

The improvement for steam temperature control at Boryung bituminous coal-fired drum boiler type thermal power plant (유연탄연소 드럼타입 보일러를 채택한 발전프랜트의 효율적 온도제어에 관한 연구)

  • 류홍우;황재호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.693-696
    • /
    • 1988
  • This paper is investigated on the improvement for steam temperature control at Boryung coal-fired drum boiler type thermal power plant. The steam temperatur control has been mainly operated by the feedback controllers. Automatic controllers are bounded and difficult. Because boiler system is nonlinear and the system time delay is very large. Optimal regulators including predictive feedforward and differentiate control are synthesized and some improved output results are presented.

  • PDF

Analysis of Reheater Pipe Crack for Oil Power Plant (중유발전소의 재열기관 균열 해석)

  • Hong, S.H.;Hong, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.643-647
    • /
    • 2003
  • Power plant Piping operating at elevated temperature often fails prematurely by the growth of microcracks under creep conditions. Therefore, the life assessment of high temperature components that contain cracks is an important technological problem. The mechanisms of crack growth in simple metals and alloys have been investigated using both mechanical and microstructural approaches. In this study, life prediction accounting for creep, crack growth and thermal stress is analyzed.

  • PDF

Modeling and Parameter Estimation of Superheater and Desuperheater (과열기와 과열저감기에 대한 모델링 및 파라미터 추정)

  • Lee, Soon-Young;Shin, Hwi-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2012-2015
    • /
    • 2010
  • In this paper, the mathematical models of the superheater and the desuperheater are derived based on the fundamental laws of physics, mass and energy balance. The parameters of the models are developed for the 500[MW] thermal power plant using the actual data. The simulated model outputs are well matched with the actual ones. It is expected that the proposed models are useful for the temperature controller design of the thermal power plant.