• 제목/요약/키워드: Thermal Power Generation System

검색결과 340건 처리시간 0.027초

반복하중을 받는 압전 복합재료 작동기의 피로 특성 (Degradation Prediction of Piezo-Composite Actuator under Cyclic Electric Field)

  • 헤리세티아완;구남서;윤광준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.286-289
    • /
    • 2004
  • This paper presents the fatigue characteristics of LIPCA (LIghtweight Piezo-Composite Actuator) device system. The LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced lightweight composite layers. Typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. The advantages of the LIPCA design are weight reduction by using the lightweight fiber reinforced plastic layers without compromising the generation of high force and large displacement and design flexibility by selecting the fiber direction and the size of prepreg layers. To predict the degradation of actuation performance of LIPCA due to fatigue, the cyclic electric loading tests using PZT specimens were performed and the strain for a given excitation voltage was measured during the test. The results from the PZT fatigue test were implemented into CLPT (Classical Laminated Plate Theory) model to predict the degradation of LIPCA's actuation displacement. The fatigue characteristic of PZT was measured using a test system composed of a supporting jig, a high voltage power supplier, data acquisition board, PC, and evaluated.

  • PDF

SUS304L 튜브의 U-Bending 성형공정에 관한 해석적·실험적 연구 (Numerical and Experimental Study of U-Bending of SUS304L Heat Transfer Tubes)

  • 김유범;강범수;구태완
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.405-412
    • /
    • 2014
  • As a major type of heat exchanger, the steam generator (SG) produces steam from heat energy of a nuclear power plant reactor. The steam produced by the steam generator flows into a turbine, and plays an important role in electric power generation. The heat transfer tubes in the steam generator consist of approximately 10,000 U-shaped tubes, which perform a structural role and act as thermal boundaries. The heat transfer tubes conduct the thermal energy between the primary coolant (about $320^{\circ}C$, $157kgf/cm^2$) obtained from the reactor and the secondary coolant (about $260^{\circ}C$, $60kgf/cm^2$) as part of the secondary system. Recently, the heat transfer tubes in the steam generator of the pressurized water reactor (PWR) are primarily produced from Alloy 600 and Alloy 690 seamless tubes. As a pilot study to find process parameters for the cold U-bending process using rotary draw bending, numerical and experimental investigations were conducted to produce U-shaped tubes from long straight SUS304L seamless tubes. 3D finite element simulations were run using ABAQUS Explicit with consideration of the elastic recovery. The process parameters studied were the angular speed, the operation period and the bending angle. Experimental verifications were conducted to insure the suitability of the final U-shaped configurations with respect to both ovality and wall thickness.

ASE 주입형 R-SOA 기반 기가급 WDM-PON 연구 (Giga WDM-PON based on ASE Injection R-SOA)

  • 신홍석;현유정;이경우;박성범;신동재;정대광;김승우;윤인국;이정석;오윤제;박진우
    • 대한전자공학회논문지TC
    • /
    • 제43권5호
    • /
    • pp.35-44
    • /
    • 2006
  • 낮은 구동 전류에서 이득 포화 현상을 일으키며 높은 변조 속도를 지원하기 위해 충분한 전광 응답 속도가 제공되는 반사형 반도체 광 증폭기(R-SOA)를 TO-can package 형태로 개발하고 기가급 파장분할다중방식 수동형 광가입자망(WDM-PON)에서 적용 가능성을 시험해 보았다. R-SOA의 제작에 Double trench 구조와 개선된 전류 차단층이 도입되어 고속 변조가 가능해졌다. 자기 방출광(ASE) 주입 방식 R-SOA를 기반으로 하는 기가급 WDM-PON에서 전송 가능하기 위해 필요한 주입 광세기 요구 조건과 사용 가능한 온도 범위를 측정하였다. 주입광의 스펙트럼에 따른 R-SOA의 전송 성능의 변화를 초과이득잡음, Q, 에러오율 측정을 통해 분석하였다. 제안된 파형이 기 조성된 ASE 공급 방법을 사용하여 출력 스펙트럼 감소에 의한 전송 신호의 품질 저하를 보완할 수 있음을 확인하였다.

여드름 치료를 위한 PWM 기반 광 조사 시스템 설계 (Design of PWM-Based Photo Irradiation System for Acne Treatment)

  • 김창수;임현수
    • 한국방사선학회논문지
    • /
    • 제6권3호
    • /
    • pp.207-215
    • /
    • 2012
  • 광 역학치료(Photodynamic therapy: PDT) 중 하나인 기존의 LED 광 조사는 연속파(Continuous wave: C.W) 방식의 635 nm 파장으로 여드름 치유에 가장 많이 사용되어 왔으나, 이 방식은 에너지효율이 낮고 생체조직에 열이 많이 발생하여 개선의 방안이 필요했다. 본 논문에서는 에너지효율을 높이고 여드름 치료를 위하여 생체조직에서의 열적 파괴현상을 방지하기위해 PWM(펄스 폭 변조: Pulse Width Modulation)을 활용한 여드름 치료용 LED 광 조사장치를 설계하였다. 시스템 구성은 크게 Timer 모듈, PWM 모듈, 광학전달 장치로 크게 세구성하여 설계하였으며, 여드름 치료를 위한 피부 투과 깊이를 높이기 위하여 광학전달 장치는 660 nm 파장의 1 W LED를 사용하였다. PWM 제어를 이용하여 발생된 주파수와 파형을 확인하고, 660 nm LED의 출력에너지 및 생체조직의 표면온도를 확인하여 안정적인 에너지출력과 생체조직의 안정성에 대해 평가하였다. 그 결과 여드름 치료를 위한 660 nm 파장의 1 W LED 광 에너지를 얻기 위하여 C.W 방식으로 사용하였을 경우 전력손실이 높고 생체조직에서의 열적 파괴현상을 보였으나, PWM 방식을 구현함으로써 펄스 폭 변조를 통하여 LED의 전력소모를 낮추었고, 생체조직의 열적 파괴현상이 나타나지 않아 여드름 치료를 위해 사용할 경우 C.W 방식보다 PWM 방식이 더 안전하고 효과적일 것으로 사료된다.

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

해수온도변화에 따른 온도차발전시스템의 동적 성능 시뮬레이션 (Dynamic Performance Simulation of OTEC According to Seawater Temperature Change)

  • 임승택;이호생;김현주
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.34-40
    • /
    • 2018
  • In this paper, Performance of 1MW OTEC system using R32 with varying seawater temperature range is studied. Steady state cycle is designed and its output and generation efficiency were 1,014kW and 2.72%, respectively. Compared to dynamic cycle, system performance and change during long term operation is studied. The simulation is performed by decreasing surface seawater temperature from $29^{\circ}C$ to $25^{\circ}C$ with 20 minute of reaction time. Dynamic cycle with same condition applied to steady state cycle and it showed output and efficiency of 1,020kW and 2.75% respectively. Seawater temperature decreased from $29^{\circ}C$ and the vapor fraction of refrigerant decreased below 1 at $28^{\circ}C$. While the vapor fraction was above 1, the turbine output decreased by 0.017kW per second. After the seawater temperature reached $26.2^{\circ}C$, the turbine output decreased by 1.03kW per second. However, Driving the turbine below the saturation temperature caused the occurrence of surging and the influx of liquid refrigerant. When the liquid separator having a capacity of 1.0 m3 was used, the flow into the turbine was confirmed after 5 minutes from the first liquid refrigerant coming into the separator.

Renewable energy deployment policy-instruments for Cameroon: Implications on energy security, climate change mitigation and sustainable development

  • Enow-Arrey, Frankline
    • 한국태양광발전학회지
    • /
    • 제6권1호
    • /
    • pp.56-68
    • /
    • 2020
  • Cameroon is a lower middle-income country with a population of 25.87 million inhabitants distributed over a surface area of 475,442 ㎢. Cameroon has very rich potentials in renewable energy resources such as solar energy, wind energy, small hydropower, geothermal energy and biomass. However, renewable energy constitutes less than 0.1% of energy mix of the country. The energy generation mix of Cameroon is dominated by large hydropower and thermal power. Cameroon ratified the Paris Agreement in July 2016 with an ambitious 20% greenhouse gas (GHG) emission reduction. This study attempts to investigate some renewable energy deployment policy-instruments that could enable the country enhance renewable energy deployment, gain energy independence, fulfill Nationally Determined Contribution (NDC) and achieve Sustainable Development Goals. It begins with an analysis of the status of energy sector in Cameroon. It further highlights the importance of renewable energy in mitigating climate change by decarbonizing the energy mix of the country to fulfill NDC and SDGs. Moreover, this study proposes some renewable energy deployment policy-solutions to the government. Solar energy is the most feasible renewable energy source in Cameroon. Feed-in Tariffs (FiT), is the best renewable energy support policy for Cameroon. Finally, this study concludes with some recommendations such as the necessity of building an Energy Storage System as well a renewable energy information and statistics infrastructure.

지역 에너지 시스템(CommunityEnergysystem)의 개통 연계 운전 특성 (An Impact Analysis of Community Energy System (CES) on The Grid)

  • 박용업;김황호;장성일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.120-122
    • /
    • 2004
  • This paper analyse impacts of Community Energy System (CES) on the grid during transition periods for integrating of the CES and the grid. In the near future, CES might be one of major energy supply structures. The basic concept of CES is that it supplies electrical and thermal energy to the local customer loads through the islanded power network separated from the grid. Therefore, the interconnection with the grid occurs only when the energy supply from the CES generators does not meet the demand of the local load. For avoiding impacting the grid during the transition operation modes of CES, it is necessary to thoroughly analyse the influences on the grid during those periods. In order to show them, in this paper, we model the CES with 2.34 WVA DG and simulate the impacts on the grid due to interconnection of CES The simulation results show that, in order to reduce bad influences of CES on the grid, CES need the efficient load management and generation control schemes during the transition periods.

  • PDF

나노 코팅을 이용한 열전달 향상에 대한 연구 (Heat Transfer Enhancement using Nano Particles coated Surface)

  • 강명보;김우중;김남진
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권2호
    • /
    • pp.8-14
    • /
    • 2018
  • A boiling heat transfer is used in various industry such as power generation systems, heat exchangers, air-conditioning and refrigerations. In the boiling heat transfer system, the critical heat flux (CHF) is the important factor, and it indicated safety of the system. It has kept up studies on the CHF enhancement. Recently, it is reported the CHF enhancement, when working fluid used the nanofluid with excellent thermal properties. Therefore, in this study, we investigated the influence of nano particles coated surface for heat transfer enhancement in pure water, oxidized multi-wall carbon nanotube nanofluid (OMWCNT), and oxidized graphene nanofluid (OGraphene). Nanoparticles were coated for 120 sec on the surface, and we measured the CHF at the flow velocities of 0.5, 1.0, and 1.5 m/sec, respectively. As the results, both of the OMWCNT and OGraphene nanofluids increased up to about 34.0 and 40.0%.

공학적인 지열시스템(EGS)을 이용한 지열발전 기술 (Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS))

  • 한정상;한혁상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF