• Title/Summary/Keyword: Thermal Phenomena

Search Result 727, Processing Time 0.025 seconds

A Study on the Micro-climate of the City to Construct Wind Ways (바람길 조성을 위한 도시미기후 측정 분석)

  • Jeon, Ji-Hyeon;Park, Seok-Bong
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.111-118
    • /
    • 2005
  • The purpose of this study is to address the progress of the heat island phenomenon and the scheme to decrease in heat island phenomenon through analysis of micro-climates according to land use and make a plan to construct wind ways. The result is: 1) Analysis of temperature and humidity at 6 spots for 24 hours showed that heat island phenomenon was considerably intense around center road of Gwangju and can be mild through making lakes and green zones. 2) Analysis of the direction and velocity of the wind at 2 spots for 24 hours showed that the direction of the wind at the center of Gwangju was SSW(South-South-West) and average velocity of the it was $1.2{\sim}1.5\;m/s$. To make the inflow of the low-temperature air current from Mt. Mudeung into the city through Gwangju river, efficient management of Gwangju riverside parks should be considered for Gwangju river itself to be wind way. 3) Analysis of mobile temperature measurement on 3 courses for 24 hours showed that the low-temperature air current of Mt. Mudeung and a micro-climate of Gwangju river can lighten thermal storage phenomena of the city in that the temperature was lowest at Gwangju riverside. These outcome is from a day term measurement. So, to figure out accurate condition of heat island phenomenon in Gwangju City, it is needed to have long term measurements and accumulation of those information.

Negative Resistance Characteristics of $Fe_{1+x}V_{2-x}O_4$ Spinels ($Fe_{1+x}V_{2-x}O_4$ Spinel의 부성저항특성)

  • Lee, Gil-Sik;Son, Byeong-Gi;Lee, Jong-Deok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.3
    • /
    • pp.25-31
    • /
    • 1977
  • Fe V spinels were prepared by sintering the well-ground stoichiometric mixtures of Fe O and V O at 1,10$0^{\circ}C$ under H -CO atmosphere. The activation energy for electrical conduction decreases with increasing amount of iron. The tendency of activation energy depending on the amount of iron contained clarifies that the electrical condction of the spinel is mainly due to electron hopping between Fe and Fe ions at B sites. In the experiment for negative resistance characteristics, the threshold voltage (Vth) for the samples is related to ambient temperature, thickness and raising rate of applied voltage. Vth decreases as temperature increases while Vth increases linearly with thickness and Vth increases linearly with the raising rate of applied voltage in semi-logarithmic scale. These results lead to a conclusion that current paths mainly formed by thermal breakdown are ascribed to the negative resistance phenomena. Applying this property, these vanadium iron spinels may be used for switching elements.

  • PDF

Thrust Performance and Plasma Acceleration Process of Hall Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.262-270
    • /
    • 2004
  • Basic experiments were carried out using the THT-IV low-power Hall thruster to examine the influences of magnetic field shape and strength, and acceleration channel length on thruster performance and to establish guidelines for design of high-performance Hall thrusters. Thrusts were measured with varying magnetic field and channel structure. Exhaust plasma diagnostic measurement was also made to evaluate plume divergent angles and voltage utilization efficiencies. Ion current spatial profiles were measured with a Faraday cup, and ion energy distribution functions were estimated from data with a retarding potential analyzer. The thruster was stably operated with a highest performance under an optimum acceleration channel length of 20 mm and an optimum magnetic field with a maximum strength of about 150 Gauss near the channel exit and with some shape considering ion acceleration directions. Accordingly, an optimum magnetic field and channel structure is considered to exist under an operational condition, related to inner physical phenomena of plasma production, ion acceleration and exhaust plasma feature. A new Hall thruster was designed with basic research data of the THT-IV thruster. With the thruster with many considerations, long stable operations were achieved. In all experiments at 200-400 V with 1.5-3 mg/s, the thrust and the specific impulse ranged from 15 to 70 mN and from 1100 to 2300 see, respectively, in a low electric power range of 300~1300 W. The thrust efficiency reached 55 %. Hence, a large map of the thruster performance was successfully made. The thermal characteristics were also examined with data of both measured and calculated temperatures in the thruster body. Thermally safe conditions were achieved with all input powers.

  • PDF

The use of HRSEM to characterize new and aged membranes in drinking water production

  • Wyart, Y.;Nitsche, S.;Chaudanson, D.;Glucina, K.;Moulin, P.
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.251-266
    • /
    • 2011
  • This work deals with the use of High Resolution Scanning Electron Microscopy (HRSEM) to verify ultrafiltration membrane selectivity at the end of the production line as well as membrane ageing. The first part of this work is focused on new membranes. It is shown that it is better to use sputtering metallization than vacuum deposition, as this latter technique entails thermal damage to the skin layer. Moreover, the impact of the metallization layer on the determination of the membrane pore size is studied and it is observed that no impact of the metallization step can be clearly defined for a metallization layer ranging from 3 to 12 nm. For example, an average pore size of 16.9 nm and a recovery rate of 6.5 % are observed for a 150 kDa cellulose acetate membrane. These results are in agreement with those given by the manufacturer: pore size ranging from 10 to 15 nm and recovery rate ranging from 5 to 10 %. The second part of this work focuses on the study of membrane ageing. A PVDF hollow fibre membrane is studied. It is shown that a 65 % decrease in the permeate flux can be linked to a decrease in the number of pores at the surface of the membrane and a decrease in the recovery rate. In conclusion, a mapping of the pores is performed for several new hollow fibre membranes used to produce drinking water, made of different materials, with different geometries and molecular weight cut-off. These results provide reference data that will help better understand the phenomena of membrane fouling and membrane ageing.

A Study on the Characteristics of Hybrid-Plasma Torch for Dyeing Wastewater Treatment (염색폐수 처리를 위한 하이브리드 플라즈마 특성연구)

  • Jung, Jang-Gun;Youn, Seok-Hyun;Park, Jae-Youn;Kim, Sang-Don
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.75-81
    • /
    • 2008
  • Water treatment study employing plasma is thoroughly examined in the following paper. The research using water plasma torch showed superior results in terms of economical and energy efficiency due to the substantial reduction of electric power. A comparison of streamer and arc discharge phenomena taken place in water was put under close scrutiny. Dyeing wastewater exposed to the plasma treatment was sampled and analyzed for relative dissolved ozone concentration, hydrogen peroxide, as well as the color removal efficiency. It was found that streamer discharges is more effective than arc discharge in growth of $H_2O_2$ and $O_3$ by plasma chemical constituents, though plasma torch had small oxidation reagents selectivity. Thus, streamer discharges, due to the efficient plasma-chemical reactions environment, proved to be more efficient compare to the thermal arc plasma loading.

A Study on the Effect of Bridge's Characteristics on Tracking Phenomena (브리지 특성이 트래킹에 미치는 영향에 관한 연구)

  • Jee, Seung-Wook;Ok, Kyung-Gea;Lee, Chun-Ha;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.82-88
    • /
    • 2008
  • This paper describes the influence of the bridge formed between electrodes by electrolyte for tracking process. Electrolytes is made by IEC(International Electrotechnical Commission) 60589, NaCl added to deionized water as each 1, 3, 5[wt%]. The used test equipment is made according to KS(Korean Industrial Standard) C IEC 00112. It is investigated voltage, current, value of resistance and thermal image when bridge formed between electrodes on tracking process. As a result, as conductivity of electrolyte gets bigger as Joule's heat on bridge also gets bigger. But It is not over electrolyte's boiling point due to evaporation heat of electrolyte. However as conductivity of electrolyte gets bigger as the necessary time of dry band gets shorter. So dry band is existed more long time between ahead of droplet to next droplet and discharge chance at dry band gets much. Therefore tracking process gets faster.

Palaeomagnetic Study of Sedimentary and Igneous Rocks in the Yangsan Strike-slip Fault Area, SE Korea (양산단층지역에 분포하는 퇴적암 및 화성암류에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Son, Moon;Jung, Hyun-Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.753-765
    • /
    • 1996
  • It is a well known fact that the remanent magnetization direction of the Tertiary rocks is deflected significantly clockwise (about $50^{\circ}$) in the Tertiary basins of the southeastern part of Korean peninsula. This fact has been interpreted as an evidence of north-south spreading of the East Sea (Sea of Japan) and dextral strike-slip motion of the Yangsan fault. As deflection (rotation) of remanent magnetizations is frequently reported from various regions of the world in the vicinities of strike-slip fault, such phenomena are to be expected in the Yangsan fault region also. It was the purpose of this study to clarify whether such premise is right or not. A total of 445 independently oriented core samples were collected from Cretaceous rocks of various lithology (sedimentary rocks, andesites and I-type granites) in the Yangsan fault area. In spite of through AF and thermal demagnetization experiments, no sign of remanent magnetization deflection was found. Instead, palaeomagnetic poles calculated from formation-mean ChRM directions are very similar to those of contemporary (Barremian, and late Cretaceous-Tertiary) sedimentary and plutonic rocks in the other parts of $Ky{\check{o}}ngsang$ basin as well as those of China. Therefore, possibility of tilting of granite plutons and horizontal block rotation of study area is excluded. It is also concluded that the Yangsan fault did not take any significant role in the Cenozoic tectonic evolution of southeast Korea and the East Sea region. The boundary between rotated and unrotated region of remanent magnetization is not the Yangsan fault line, but must lie further east of it.

  • PDF

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

A Study on the Process of Hybrid Welding Using Pulsed Nd:YAG Laser and Dip-transfer DC GMA Heat Sources (펄스형 Nd:YAG 레이저와 단락이행모드의 직류 GMA 열원을 이용한 하이브리드 용접 공정에 대한 연구)

  • Cho, Won-Ik;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.71-77
    • /
    • 2007
  • Until now, many researches on laser-arc hybrid welding processes have been conducted mainly for high power CW laser and high direct current arc to weld the thick steel plates for shipbuilding. Recently, however the usage of thin steel plates, which tend to be deformed easily by thermal energy, is been increasing because of demand of light structure such as car body in the automobile industry. Accordingly, heat sources having relatively low heat input such as pulsed laser, dip-transfer DC GMA and pulsed GMA seem to be applied more increasingly and the study about those heat sources is needed more intensively. Any heat source mentioned above can not stand alone without weld defects at a relatively high welding speed for increasing the welding productivity. This is main reason to apply the hybrid welding process which uses pulsed laser and low-heat-input GMA heat sources simultaneously to weld the thin steel plate. In this study, parameters of pulsed laser and dip-transfer DC GMA welding are studied firstly through preliminary experiments, and then analyzed in the viewpoint of their physical phenomena. Before conducting the hybrid welding, a pulse control technique is developed based on the parallel port communication and Visual C++ 6.0. Owing to development of this technique, interactions of laser and arc pulses can be controlled consistently. Using the pulse control technique, the hybrid welding is conducted and then its interactive welding phenomenon is analyzed.

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe Using Mixed Working Fluid (혼합 작동 유체를 이용한 진동 세관형 히트 파이프의 압력 진동과 열전달 특성에 관한 연구)

  • Jeong, Hyeon-Seok;Kim, Jeong-Hun;Kim, Ju-Won;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.318-327
    • /
    • 2002
  • In this paper, heat transfer and pressure oscillation characteristics on oscillating capillary tube heat pipe(OCHP) according to input heat flux, mixture ratio of working fluid and inclination angle were investigated and were compared single working fluid(R-142b) with binary mixture working fluid(R-142b-Ethano1). OCHP was made to serpentine structure of loop type with 10 turns by drilling the channels of length 220mm, width 1.5mm, and depth 1.5mm on the surface of brass plate. In this study, R-l42b and R-l42b-Ethanol were used as working fluids, the charging ratio of working fluids was 40(vol.%), the input heat flux to evaporating section was changed from 0.3W/㎠ to 1.8W/㎠, and mixture ratio of working fluid was R(100%), R(95%)-E(5%), R(90%)-E(10%), and R(85%)-E(15%). From the experimental results, it was found that the effective thermal conductivity of single working fluid was better than that of binary mixture working fluid. But, in case of binary mixture working fluid, critical heat flux was higher than that of single working fluid. And, the higher the mixture ratios of working fluid, the lower heat transfer performance. In case of pressure oscillation, as the inclination angle was lower, pressure wave was more irregular. These phenomena were more serious when the working fluid was binary mixture. Besides, when mixture ratio was higher, saturated pressure was increased, more irregular wave was observed and the mean amplitude was increased. For the same input heat flux, inclination angle and charging ratio, when pressure oscillation has sinusoidal wave, mean amplitude was small, and saturated pressure was low value, the heat transfer was excellent.