• Title/Summary/Keyword: Thermal Performance Index

Search Result 118, Processing Time 0.023 seconds

A Study on Perpendicular Flame Retardant Characteristic Improvement of Halogen-free Flame Retardant Compounds by Nanoclay Addition (나노클레이 첨가에 따른 할로겐프리 난연컴파운드의 수직난연 특성 향상에 관한 연구)

  • Hwang, Chan-Yun;Yang, Jong-Seok;Seong, Baeg-Yong;Kim, Ji-Yeon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.51-56
    • /
    • 2015
  • The object of this study is to obtain the optimum mix proportion of halogen free compound with flame resistance and, for the purpose, thermal/electrical characteristics test are conducted using compatibilizing agents, flame resistance agents, hydroxide aluminum, sunscreen, antioxidant and silicon oil on the base resin of linear low density polyethylene (LLDPE), Ethylene vinyl acetate copolymer (EVA). Existing compound method accompanies many requirements to be satisfied including a lot of addition of flame resistance agents, prohibition of impact on mixing capability with base and property and etc. In this study, different from the existing method, the optimum mix proportion is determined and experimented by adding nano clay. Oxygen index test shows no difference between specimens while T-6, T-9 shows oxygen index of 29[%] and 26[%], respectively. This is concluded that hydroxide aluminum, which is a flame resistance agent, leads low oxygen index. From UL94-V vertical flame resistance test, the combustion behavior is determined as V-0, Fail based on UL94-V decision criteria. Viscometry shows low measurements in specimens with separate addition of compatibilizing agents or nano clay. Volume resistivity test shows low measurement mainly in specimens without compatibilizing agents. Therefore, with the flame resistance compound shows better performance for thermal/electrical property and the optimum mix proportion are achieved among many existing materials.

Heat Mitigation Effects of Urban Space based on the Characteristics of Parks and their Surrounding Environment (도시공원 및 주변환경의 특성이 도시공간의 온도저감에 미치는 영향)

  • Suh, Jung-Eun;Oh, Kyu-Shik
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.5
    • /
    • pp.1-14
    • /
    • 2020
  • In order to improve the urban thermal environment, efforts are being made to increase green areas in cities that include park construction, planting, and green roofing. Among these efforts, urban parks play an important role not only in improving the urban thermal environment, but also in terms of ecosystem services (serving as resting places for citizens, providing cleaner air quality, reducing noise, etc.). Therefore, the purpose of this study is to suggest planning and management guidelines for urban parks that are effective in improving the thermal environment, by analyzing the urban surface temperature reduction performance of urban parks. To do this, first, land surface temperature was calculated by using Landsat 8 images. Second, the PCI (Park Cool Island) index was calculated to identify the temperature reduction performance of urban parks. Third, the characteristics of parks (area, shape, vegetation) and the surrounding spatial characteristics (land cover, building-related variables, etc.) were identified. Finally, the relationship between the PCI indices (PCI scale, PCI effect, PCI intensity) and the characteristics of the parks and their surroundings were analyzed. The results revealed that the parks consisting of a larger area, simple shape, and higher tree coverage ratio had increased PCI performance, and were advantageous for improving the urban thermal environment. Meanwhile, PCI performance was found to have decreased in areas with a higher impermeable area ratio and building coverage ratio. The outcomes of this study can be used to identify priority areas for planning and management of urban parks and can also be utilized as planning and management guidelines for improving urban thermal environment.

Classification Index and Grade Levels for Energy Efficiency Classification of Agricultural Heaters in Korea

  • Shin, Chang Seop;Jang, Ji Hoon;Kim, Young Tae;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.264-269
    • /
    • 2013
  • Purpose: This study was carried out to develop a classification index and grade levels to rate agricultural heaters for energy efficiency classification. Methods: The classification index was developed mainly by taking simplicity of calculation and easy access to relevant data into consideration. The grade levels were developed on the basis of a 5-grade classification system in which graded heaters are to be normally distributed over the grades. The value of each grade level were determined in terms of the classification index values calculated using the published performance data of agricultural heaters tested at the FACT in Korea over the past 12 years. Results: The thermal efficiency of agricultural heaters based on the enthalpy method was proposed as a reasonable classification index. The grade levels were proposed in equation form for three types of agricultural heaters: fossil fuel heaters, wood pellet heaters and wood pellet boilers. A reasonable energy efficiency classification of agricultural heaters could be performed using the proposed classification index and grade levels. Conclusions: It is expected that energy saving programs will be extended to agricultural machines in the near future. The classification index and grade levels to rate agricultural heaters for energy efficiency classification were developed and proposed for such near future to come.

Evaluation of Thermal and Visual Environment for the Glazing and Shading Device in an Office Building with Installed of Venetian Blind (베네시안 블라인드가 적용된 오피스 건물의 외피 투과체 계획을 위한 열·빛 환경 평가에 대한 연구)

  • Kim, Chul-Ho;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose: Glazing and shading devices influence a lot on the thermal and visual environment in office buildings. Solar heat and daylight are contrary concept, therefore proper arrangement of thermal and optical performance is needed when designing a glazing and shading devices. The purpose of this study is to examine the conditions of the glazing and shading devices available for promoting the reduction of cooling loads + lighting loads and the improvement in thermal comfort and visual comfort for the summer season in an office building installed with venetian blind. Method: This study established 12 simulation cases which have different glazings and the positions of venetian blind for evaluating different thermal and optical performance. And by using EnergyPlus v8.1 and Window v7.2 program, we quantitatively analyzed cooling loads + lighting loads, thermal comfort and visual comfort in an office building installed with the glazing and shading devices. Result: Consequently, Case 9(Double Low-E+Exterior Blind) is the best arrangement of solar heat gain and daylight influx, thereby becomes the most excellent case of reducing cooling+lighting loads(46.8%) and simultaneously becomes the enhancement case in thermal comfort. Also, DGI(Daylight glare index) under clear sky conditions in summer was evaluated to be 19.6, and thereby satisfied the recommendation level of allowing visual comfort.

A NUMERICAL INVESTIGATION OF INDOOR AIR QUALITY WITH CFD

  • Sin Vai Kuong;Sun Ho I
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.87-93
    • /
    • 2005
  • Macao, a city with three sides bounded by water, is hot and humid in weather in more than six months of a year. This uncomfortable weather induces the frequency of operating air-conditioners. Choice of location for installation of air-conditioner in a building will affect the performance of cooling effect and thermal comfort on the occupants, which in turn will affect the indoor air quality (IAQ) of the building. In the paper, investigation of distribution on carbon dioxide, room air temperature and velocity, as well as air diffusion performance index (ADPI) of a single bedroom in Macao is studied by using the computational fluid dynamics (CFD) software FLOVENT 3.2. Simulations of locating the air-conditioner at 4 different walls will be done and comparisons and analyses of the results will be performed to decide a proper location for the air-conditioner for obtaining good thermal comfort.

The performance improvement of the diesel engine by the ultrasonic vibrations (초음파진동을 이용한 디젤기관의 성능향상에 관한 연구)

  • 정명진;조규상;류정인
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.65-71
    • /
    • 1991
  • This paper describes briefly the effect of ultrasonic vibrations on the performance of four cycle diesel engine. Experiments were carried out to clarify the effect of ultrasonic vibrations on the characteristics of viscosity, structure of diesel oil, fuel consumption rate, brake thermal efficiency, smoke emissions, cylinder pressure of engine. The results are obtained as follows: 1. The ultrasonic vibrations of diesel oil result in the decrease of kinematic viscosity, Brachness Index of diesel oil. 2. The ultrasonic vibrations of diesel oil result in the decrease of fuel consumption rate, the improvement of brake thermal efficiency of engine. 3. The ultrasonic vibrations of diesel oil result in the decrease of smoke emissions of engine.

  • PDF

Design of sinusoidal shape channel PCHEs for supercritical LNG based on CFD simulation (CFD 시뮬레이션 기반 초임계 LNG용 사인함수 PCHE 설계)

  • Fan, Jinxing;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Printed circuit heat exchanger (PCHE) is a compact heat exchanger with good heat transfer performance, high structure integrity, and reliability over a wide range of temperatures and pressures. Instead of the traditional zigzag and straight shape channel, the sinusoidal shape channel was adopted in this study to investigate the relation of thermal-hydraulic performance and waviness factors (period and amplitude). The local flow characteristics and the heat flux distribution were compared to verify the effects of period and amplitude on heat transfer performance. As the period of channel becomes shorter, the rapid change of the flow direction can produce high flow separation around the corner leading to the disturbance of the boundary layer opposite wall. The nonuniform distribution of flow velocity appeared around the corner positions can promote fluid mixing and lead to higher thermal performance. An evaluation index was used to compare the comprehensive performance of PCHE considering the Nusselt number and Fanning factor. Based on the simulation results, the optimal design parameters of PCHE channel shape were found that the channel with an equivalent bending angle of 15° offers the highest heat flux capacity.

Analysis of Hygrothermal Performance of Wood Frame Walls according to Position of Insulation and Climate Conditions

  • Kang, Yujin;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.264-273
    • /
    • 2016
  • The insulation of a building envelope influences the hygrothermal performance as well as the thermal performance of the building. While most of Korean wood frame houses have an interior insulation system, the exterior insulation system with high thermal performance has recently been applied. While it can be effective in energy savings for better insulation performance, without consideration of the moisture, condensation and mould growth can occur. Therefore, in this study, hygrothermal behaviour, water content, and mould growth were analyzed using hygrothermal simulation of an exterior wall of a wood frame house with which the interior insulation and exterior insulation systems were applied. The wall layer included Wall A (Interior insulation) and Wall B (Exterior insulation). The U-values were identified as 0.173 and $0.157W/m^2K$, respectively. The total water content and OSB absolute water content of Wall A were confirmed to be higher than those of Wall B, but the absolute water content did not exceed the reference value of 20%. The moisture content of the two walls was determined to be stable in the selected areas. However, mould growth risk analysis confirmed that both Wall A and Wall B were at risk of mould growth. It was confirmed that as the indoor setting temperature decreased, the mould index and growth rate in the same area increased. Therefore, the mould growth risk was affected more by indoor and outdoor climate conditions than by the position of the insulation. Consequently, the thermal performance of Wall B was superior to that of Wall A but the hygrothermal performances were confirmed to be similar.

Performance, hemato-biochemical indices and oxidative stress markers of broiler chicken fed phytogenic during heat stress condition

  • Olatunji Abubakar, Jimoh;Olajumoke Temidayo, Daramola;Hafsat Ololade, Okin-Aminu;Olayinka Abosede, Ojo
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.970-984
    • /
    • 2022
  • Thermal stress is a tremendous health predicament encountered by poultry farmers with adverse effects on the performance, product stature, health condition, survival, and overall welfare of poultry birds, and so requires urgent dietary user-friendly strategy to curb. This study was conducted with 200-day old broilers for the purpose of investigating the potential of phytogenics in refining the negative effects of heat stress on broiler chicken. Moringa, Phyllanthus and mistletoe leaves were processed as phytogenic supplements and incorporated into standard ration for broilers as treatments B1 (control), B2, B3 and B4 diet during the peak of thermal discomfort in humid tropics. Growth and carcass indices were monitored in a 49-day trial and blood samples were harvested at the end of the ordeal period to assess haematology, serum biochemical and oxidative stress markers with the use of standard procedures. The results obtained showed that the prevailing environmental condition in the study site indicated that the birds were exposed to heat stress. Birds fed on moringa and mistletoe supplements had higher performance index than birds without supplementation during heat stress condition, while birds fed on mistletoe supplement had the highest survival rate across the treatments. The liveweight, slaughter weight, dressed weight and eviscerated weight of heat stressed birds fed on moringa, phyllanthus and mistletoe supplements were significantly higher than birds on control treatment. Heterophyl/lymphocyte ratio of heat stressed birds without supplement were higher than birds on phytogenic supplements, with least values recorded in phyllanthus and mistletoe fed birds. Birds on phytogenic supplement tend to have lower cholesterol profile, lipid peroxidation and better antioxidant profile than birds on control treatment during heat stress conditions. Mistletoe supplementation in broiler ration enhances the survival rate, as well as promotes growth indices better among the phytogenic supplements. However, phytogenic supplements did ameliorate the negative effects of thermal discomfort on performance, physiological and oxidative stress in heat-stressed broiler chicken.

Performance Analysis of the FH/CPFSK System with the Partial-band Jamming (부분대역 재망하에서 FH/CPFSK 시스템의 성능 분석)

  • 곽지규;박진수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.1-9
    • /
    • 1994
  • In this paper, we analyzed the performances for FH/CPFSK system with limiter-discriminator detection and integrate-and-dump post-detection filtering under thermal noise and partial-band jamming noise. And,we considered intersymbol interference-related SNR and differential phase parameters for all eight of the possible adjacent bit data patterns, FM noise clicks for evaluating FH/CPFSK and CPFSK Systems. In result, the optimum modulation index h was 0.7 and the optimum value of bandwidth-time product D was 1.0 Next, when we considered the thermal noise under the partial-band jamming, the thermal noise significantly influenced the error probability of system below 20dB approximately but could ignore above 20dB.

  • PDF