• Title/Summary/Keyword: Thermal Network

Search Result 535, Processing Time 0.037 seconds

Rheological, Morphological and Electrical Properties of Polycarbonate/Multi-walled Carbon Nanotube Composites

  • Han, Mi-Sun;Sung, Yu-Taek;Chung, Ji-Woong;Kim, Woo-Nyon;Lee, Heon-Sang;Kum, Chong-Ku
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.220-220
    • /
    • 2006
  • Rheological and electrical properties of the polycarbonate (PC) / multi-walled carbon nanotube (MWNT) were studied. The MWNT was funtoinalized by treating with the hydrogen peroxide ($H_{2}O_{2}$). The electrical conductivity showed higher value for the PC/MWNT ($H_{2}O_{2}$ treated, freeze drying) composites compared that of the PC/MWNT ($H_{2}O_{2}$ treated, thermal drying) composites. From the results of the morphological, rheological, and electrical properties of the PC/MWNT composites, it is suggested that the electrical and rheological properties of the PC/MWNT composites are affected by the MWNT-MWNT network structure which is related with the MWNT morphologies such as the degree of aggregation and aspect ratio of the MWNT.

  • PDF

Supramolecular Liquid Crystals Containing Hydrogen Bond between Carboxylic Acid and Pyridyl Moieties and their Thermotropic Mesomorphism

  • Lee, Seung-Jun;You, Mi-Kyoung;Lee, Ji-Won;Lee, Shin-Woo;Jho, Jae-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.297-297
    • /
    • 2006
  • Recently columnar liquid crystals have been studied due to their possible application to organic conducting materials. Supramolecular columnar liquid crystals consist of mesogenic unit which can aggregate into discs that will make up the columns which associate to form a two-dimensional network. In this study, we prepared supramolecular columnar liquid crystals containing hydrogen bonding between carboxylic acid and, pyridine moieties. Thermal and structural properties of prepared complexe were investigated, and it exhibited hexagonal columnar structure ($Col_{h}$) at room temperature.

  • PDF

Fabrication of Novel Dual Mode Resonator Using Superconducting Thin Film Grown by Pulsed Laser Deposition (펄스 레이저 증착법에 의한 YBCO 박막증착과 이중모드 공진기의 제작)

  • Park, Joo-Hyung;Lee, Sang-Yeol;Ahn, Dal
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1546-1548
    • /
    • 1998
  • Dual mode ring resonators(DMRR) have been fabricated using laser ablated $YBa_2Cu_3O_{7-x}$ superconducting thin films. The transition temperature of YBCO thin films were 85 - 88 K and the film thicknesses were about 5,000 $\AA$. Dual mode ring resonators were patterned by standard photolithography process and wet-etching. Then two-layer metal thin films (Ti/Ag) have been deposited for the ground plane on the back side of substrate by e-beam and thermal evaporation. The input/output feedline angles of each resonator were $60^{\circ}$, $100^{\circ}$, $180^{\circ}$. A network analyzer was used for testing the performance of the resonators in the frequency range of 6-13 GHz at 77 K.

  • PDF

Development of the Hybrid Fault Current Limiter (복합형 한류기 개발)

  • Park, K.B.;Lee, G.H.;Bang, S.H.;Choi, W.J.;Sim, J.W.;Sin, Y.S.;Kim, Y.G.;Hyun, O.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.125-125
    • /
    • 2010
  • The Hybrid Fault current limit combined the semiconductor switching components, for example IGBT, with mechanical fast switch reduced mechanical and thermal stress on electrical machines, for example circuit breaker, transformer, and so on, in the electric network. We had focused on reducing the voltage stress of the semiconductor switching components by the mechanical fast switch. As a result, we could dramatically reduce amount of semiconductor switching components only using parallel arrangement of them, not series.

  • PDF

Low-Temperature Operating $SnO_2$ Nanowire $NO_2$ Sensor

  • Jung, Tae-Hwan;Kwon, Soon-Il;Kim, Yeon-Woo;Park, Jae-Hwan;Lim, Dong-Gun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.485-486
    • /
    • 2008
  • The network structure of $SnO_2$ nanowires was fabricated on the electrodes by a simple thermal evaporation process from Sn metal powders and oxygen gas. The diameter of the nanowires was $20\;{\sim}\;60\;nm$ depending on the processing conditions. The operating temperature of the sensor could be decreased down below $50^{\circ}C$ by controlling the properties of the nanowires and the structures of the electrodes. The sensitivities were $10\;{\sim}\;15$ when the $NO_2$ concentrations were $10\;{\sim}\;50\;ppm$ at the operating temperature of $50^{\circ}C$.

  • PDF

HOW TO MONITOR AGN INTRA-DAY VARIABILITY AT 230GHZ

  • Kim, Jae-Young;Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • We probe the feasibility of high-frequency radio observations of very rapid flux variations in compact active galactic nuclei (AGN). Our study assumes observations at 230GHz with a small 6-meter class observatory, using the SNU Radio Astronomical Observatory (SRAO) as an example. We find that 33 radio-bright sources are observable with signal-to-noise ratios larger than ten. We derive statistical detection limits via exhaustive Monte Carlo simulations assuming (a) periodic, and (b) episodic flaring flux variations on time-scales as small as tens of minutes. We conclude that a wide range of flux variations is observable. This makes high-frequency radio observations-even with small observatories-a powerful probe of AGN intra-day variability; especially, those which complement observations at lower radio frequencies with larger observatories like the Korean VLBI Network (KVN).

Simulation of the Corona Charging Process in Polypropylene Electret for Sensor Material

  • Park, Geon-Ho;Park, Young-Chull;Yang, Jung-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.68-72
    • /
    • 2000
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current (TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method (FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

A Fundamental Study of Thermal-Fluid Flow Analysis using High Performance Computing under the GRID (그리드 환경하에서 고성능 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초연구)

  • Hong, Seung-Do;Lee, Dae-Sung;Lee, Jae-Ryong;Ha, Man-Yeong;Lee, Sang-San
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.928-933
    • /
    • 2003
  • For simulation of three-dimensional turbulent flow with LES and DNS takes much time and expense with current available computing resources. It is nearly impossible to simulate turbulent flow with high Reynolds number. So, the emerging alternative is the Grid computing for needed computation power and working environment. In this study, the CFD code was parallelized to adapt it for the parallel computing under the Grid environment. In the first place, the Grid environment was built to connect the PC-Cluster facilities belong to the different institutions using communication network system. And CFD applications were calculated to check the performance of the parallel code developed for the Grid environment. Although it is a fundamental study, it brings about a important meaning as first step in research of the Grid.

  • PDF

New Functional Conductive Polymer Composites Containing Nickel Coated Carbon Black Reinforced Phenolic Resin

  • Farid El-Tantawy;Nadia Abdel Aal;Yong Kiel Sung
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.194-205
    • /
    • 2005
  • The network structure of Ni-coated carbon black (NCB) composites filled with phenolic resin was investigated by means of using scanning electron microscopy, viscosity, interfacial tension, shrinkability, Flory-Huggins interaction parameters, and swelling index. The electrical properties of the composites have been characterized by measurement of the specific conductivity as a function of temperature. Additionally, the variation of conductivity with temperature for the composites has been reported and analyzed in terms of the dilution volume fraction, relative volume expansion, and barrier heights energy. The thermal stability of phenolic-NCB composites has been also studied by means of the voltage cycle processes. The experimental data of EMI wave shielding were analyzed and compared with theoretical calculations. The mechanical properties such as tensile strength, tensile modulus, hardness and elongation at break (EB) of NCB-phenolic resin composites were also investigated.

Adaptive Intelligent Control of Nonlinear dynamic system Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.146-156
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,\dot{x},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.