• Title/Summary/Keyword: Thermal Network

Search Result 535, Processing Time 0.028 seconds

Adaptive Intelligent Control of Inverted Pendulum Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2372-2377
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,{\dot{x}},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

  • PDF

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

Characterization and Construction of Chemical Vapor Deposition by using Plasma (rf 플라즈마 화학기상증착기의 제작 및 특성)

  • 김경례;김용진;현준원;이기호;노승정;최병구
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.69-76
    • /
    • 2000
  • The rf plasma chemical vapor deposition is a common method employed for diamond or amorphous carbon deposition. Diamond possesses the strongest bonding, as exemplified by a number of unique properties-extraordinary hardness, high thermal conductivity, and a high melting tempera tore. Therefore, it is very important to investigate the synthesis of semiconducting diamond and its use as semiconductor devices. An inductively coupled rf plasma CVD system for producing amorphous carbon films were developed. Uniform temperature and concentration profiles are requisites for the deposition of high quality large-area films. The system consists of rf matching network, deposition chamber, pumping lines for gas system. Gas mixtures with methane, and hydrogen have been used and Si (100) wafers used as a substrate. Amorphous carbon films were deposited with methane concentration of 1.5% at the process pressure of S torr~20 torr, and process temperature of about $750^{\circ}C$. The nucleation and growth of the amorphous carbon films have been characterized by several methods such as SEM and XRD.

  • PDF

A Study on the Sintering and Mechanism of Crystallization Prevention of Alumina Filled Borosilicate Glass (알루미나를 충전재로 첨가한 붕규산염 유리의 소결 및 결정화 방지기구에 대한 연구)

  • 박정현;이상진;성재석
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.956-962
    • /
    • 1992
  • The predominant sintering mechanisms of low firing temperature ceramic substrate which consists of borosilicate glass containing alumina as a filler are the rearrangement of alumina particles and the viscous flow of glass powders. In this system, sintering condition depends on the volume ratio of alumina to glass and on the particle size. When the substrate contains about 35 vol% alumina filler and the average alumina particle size is 4 $\mu\textrm{m}$, the best firing condition is obtained at the temperature range of 900∼1000$^{\circ}C$. The extensive rearrangement behavior occurs at these conditions, and the optimum sintering condition is attained by smaller size of glass particles, too. The formation of cristobalite during sintering causes the difference of thermal expansion coefficient between the substrate and Si chip. This phenomenon degradates the capacity of Si chip. Therefore, the crystallization should be prevented. In the alumina filled borosilicate glass system, the crystallization does not occur. This effect may have some relation with aluminum ions in alumina. For aluminum ions diffuse into glass matrix during sintering, functiong as network former.

  • PDF

A Study on the Strategy to Maintain Optimal Flow-rate and Pressure of the Piping System for Individual Heating (개별 난방방식에서의 배관 내 절정 유량 및 압력유지에 관한 연구)

  • Hong Seok-Jin;Ryu Seong-Ryong;Seok Ho-Tae;Yeo Myoung-Souk;Kim Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.17 no.2
    • /
    • pp.11-18
    • /
    • 2006
  • For the more comfortable thermal environment in residential buildings, it was necessary for variable components like as automatic flow limiting valves and/or balancing valves in hydronic system. And, these components had an effect on flow-rate and pressure inside pipe. In this case, the incompatibility between the design for the heating system and the selection of equipment was the causes of several problems in heating pipe network. In this study, we peformed measurements and analyses of flow rate and pressure inside pipe for radiant floor heating in residential buildings through field surveys and experiments in order to find out the actual conditions and problems. On the basis of this, we suggested the approach for the optimal flow-rate and pressure maintaining inside pipe in individual heating system.

Indoor Temperature Estimation System for Reduction of Building Energy Consumption (건물 에너지 절감을 위한 실내 온도 추정 시스템)

  • Kim, Jeong-Hoon;You, Sung Hyun;Lee, Sang Su;Kim, Kwan-Soo;Ahn, Choon-Ki
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.885-888
    • /
    • 2017
  • In this paper, a new strategy for estimating building temperature based on the modified resistance capacitance (R - C) network thermal dynamic model is proposed. The proposed method gives accurate indoor temperature estimation using minimum variance finite impulse response filter. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

A Study on the development of developer for positive type presensitized off-set plates (포지용 오프셋 PS판의 현상액 개발)

  • 오세웅
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • Recently the study of the application of liquid crystal in industrial fields has developed rapidly. It is well known that the encapsulated liquid crystal is advantageous than raw liquid crystal for protection of surface pollution. This paper describes a new class of thermal sensor. It is that the liquid crystal polymer composite(LCPC) films consisting of a continuous LC phase embedded in a three-dimensional network of polymer matrix are formed by photopolymerization-induced phase separation. In this works, it has been demonstrated that consiste of a 8:2 mixture of chiral nematic liquid crystal and HX-620 has the greatest domain and it was best discoloration.

  • PDF

Emerging Frontiers of Graphene in Biomedicine

  • Byun, Jonghoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2015
  • Graphene is a next-generation biomaterial with increasing biomedical applicability. As a new class of one-atom-thick nanosheets, it is a true two-dimensional honeycomb network nanomaterial that attracts interest in various scientific fields and is rapidly becoming the most widely studied carbon-based material. Since its discovery in 2004, its unique optical, mechanical, electronic, thermal, and magnetic properties are the basis of exploration of the potential applicability of graphene. Graphene materials, such as graphene oxide and its reduced form, are studied extensively in the biotechnology arena owing to their multivalent functionalization and efficient surface loading with various biomolecules. This review provides a brief summary of the recent progress in graphene and graphene oxide biological research together with current findings to spark novel applications in biomedicine. Graphene-based applications are progressively developing; hence, the opportunities and challenges of this rapidly growing field are discussed together with the versatility of these multifaceted materials.

The Automatic Precision Measurement of RF Voltage using Power and Impedance Standards (전력과 임피던스표준을 이용한 RF전압의 정밀 자동측정)

  • Shin, Jin-Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.319-323
    • /
    • 2007
  • In this paper, the automatic precision measurement of RF voltage has been done using the power and impedance standards [1] in the frequency range of 50 to 1000 MHz. A coaxial microcalorimeter and an automatic network analyzer were used for the determination of the RF-DC differences and the total uncertainty is about 1.0 %. A HP computer, a commodore computer and IEEE-488 interface bus were used for measuring the effective efficiency of thermistor mount and the RF-DC difference of thermal voltage converter, All processes of measurement were accomplished by self-developed program automatically.

A Study on the Radiation and Convection Component Separated from Surface Combined Heat Transfer Coefficient on Dynamic Heat Load Simulation (표면 열전달율의 복사.대류성분 분리와 비정상 열부하 계산에 관한 연구)

  • Kim, Young-Tag;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • The purpose of this paper was to analyze the influence of radiation and convection component separated from surface heat combined transfer coefficient on dynamic Heat load simulation. In general, it was not considered the mutual radiation of walls that heat load simulation calculated by surface combined heat transfer coefficient. In order to solve this problem, we had developed new simulation program to calculate radiation heat transfer and convection heat transfer respectively, and verified the influence of radiation component with this new program, in indoor heat transfer process.