• Title/Summary/Keyword: Thermal NOx

Search Result 362, Processing Time 0.026 seconds

PERFORMANCE AND EXHAUST GAS CHARACTERISTICS ON DIESEL PARTICULATE FILTER TRAP

  • Oh, S.K.;Baik, D.S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.111-115
    • /
    • 2002
  • Suddenly increasing numbers of automobiles result in making worse air pollution problems. In particular, the emissions from automobiles affect badly on atmosphere. Nowadays, research on catalyst converter and filter trap as a modem technology is very active because PM is designated as a major cancer material and stringent regulations on this are necessary and required. The ceramic filter is very efficient in reducing particular materials up to 80-90% and is evaluated as a very efficient after-treatment technology. However, it comes with decreased engine performance due to increased back-pressure occurred by thermal crack. In order to solve these problems, several methods are proposed such as fuel additive, electric heater and burner types. This experimental study has been conducted with equipped and unequipped a ceramic filter on a displacement 11,000cc diesel engine and compared in terms of engine performance and emission. To measure the emission, D-13 mode is applied and measured quantities of the exhaust gases, particularly in CO, HC, PM, and NOx. Therefore, this research is focused on the basic mechanism and characteristics on harmful materials generated by ceramic filter.

Simulation of Natural Gas and Pulverized Coal Combustion using 93-PCGC-2 (93-PCGC-2을 이용한 천연가스 연소와 미분탄 연소 모사)

  • 조석연;서경원;이진욱
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.50-55
    • /
    • 1995
  • 향상되어진 93-PCGC-2는 기존의 PCGC-2와 같이 미분탄 연소를 포함하는 다양한 반응성흐름과 비반응성 흐름을 설명하기 위해 2차원 정상상태 모델로 제시되어 졌다. 93-PCGC-2는 실린더형의 축 대칭계에 응용되어질 수 있고, 난류(Turbulence)는 유체역학식과 연소기구 양쪽을 위해 고려되어졌으며, 불연속 세로좌표 방법(Discrete Ordinates Method)을 이용하여 기체, 벽 및 입자들로부터의 복사열(Radiation)을 모사하였다. 입자상은 입자 무리들의 평균 경로들을 따라 해석하는 Lagrangian계의 해석법으로 모델화되어졌다. 석탄의 팽윤(Swelling)과 촤의 반응성에 관한 부모델과 더불어 새롭게 일반화된 석탄 탈휘발화 부모델 (FG-DVC)도 첨가되어졌다. 비균일 반응기구는 확산과 화학반응 둘 모두를 고려하였다. 주요 기상반응은 국부 순간 평형을 가정하여 모델화하였다. 그래서 반응속도는 혼합의 난류속도에 의해 제한되어진다. Thermal NOx과 Fuel NOx의 유한속도 화학론(Finite Rate Chemstry)에 대한 부모델은 화학반응속도론와 난류성의 통계치를 통합하여 만들어져 있다. 기상은 반복적인 line-by-line기교에 의해 풀려지는 elliptic partial differential equation으로 묘사되어진다. 수치적인 안정을 고려하기 위해 under-relaxation이 이용되어졌다. 이렇게 코드화된 93-PCGC-2는 연소를 위해 모사되어졌다. 또한 더 나아가 이 수치모델의 활용범위는 미분탄의 가스화에도 활용되어질 것으로 기대되어진다.

  • PDF

Studies on Combustion Characteristics and Reduced Kinetic Mechanisms of Natural Gas Premixed Flames (천연가스 예혼합화염의 연소특성 및 축소반응메커니즘에 관한 연구)

  • 이수룡;김홍집;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.166-177
    • /
    • 1998
  • Combustion characteristics of natural gas premixed flames is studied experimently and numerically by adopting a counterflow as a flamelet model in turbulent flames. Flame speeds are measured by employing LDV, and the results show that flame speed increases linearly with strain rate, which agrees well with numerical results. Parametric dependences of extinction strain rates are studied numerically with detailed kinetic mechanism to show that the addition of ethand to a methane premixed flame makes the flame more resistant to strain rate. The effect of pressure on the extinction strain rate is that the extinction strain rate increases up to 10 atm and them decreases, which is explained by competition of chain branching H+O2=OH+O and recombination reaction H+O2+M=HO2+M. Detailed mechanism having seventy-four step is systematically reduced to a nine-step and a five-step thermal NOx chemistry is reduced to two-step. Comparison between the results of the detailed and the reduced mechanisms demonstrates that the reduced mechanism successfully describes the essential features of natural gas premixed flames including extinction strain rate and NOx production.

  • PDF

The influence of significant design factor on CO and NOx emission in gas cooktop burner (가스 쿡탑 버너에서 디자인 형상이 배기배출물에 미치는 영향)

  • Jeong, Yong-Ki;Kim, Yoong-Soo;Yang, Dae-Bong;Kim, Yang-Ho;Ryu, Jong-Wan;Wie, Jae-Hyug;Lim, Jae-Beom;Seok, Jun-Ho;Chang, Yoong-June;Jeon, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2192-2197
    • /
    • 2008
  • An experimental study was performed to investigate the effects of configuration of burner and air excess ratio on CO & NOx emission characteristics of the cooktop burners which are used extensively. In this study, the combustion characteristics were investigated with the variation of design factor of cooktop burners. The results showed that as the thermal input increases, flammable region go narrower. With the increase of loading height from the cap to grate, the CO emission decrease owing to the reduction of quenching by flame impingement on the load. Additionally, the CO emission increase with angle of main slot, however the NO emission is almost unaffected.

  • PDF

A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System (SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (II) (저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(II))

  • Lee, Jae-Ok;Song, Young-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.414-419
    • /
    • 2006
  • Effects of water vapor, hydrocarbons, and CO, which are inevitably included in exhaust gases of combustion, on a combined $De-NO_{x}$ process of non-thermal plasma and $NH_{3}$ SCR (Selective Catalytic Reduction) have been investigated. Test results showed that fast SCR reaction enhanced $De-NO_{x}$ rate under the low temperature conditions, $150{\sim}200^{\circ}C$ The present test, however, showed that the role of the fast SCR reaction can be significantly suppressed by addition of hydrocarbons in a non-thermal plasma reactor. Detailed investigation verified that such suppressed role of the fast SCR reaction could be caused by the $NO_{2}/NO_{x}$ ratio modified by aldehydes produced from hydrocarbons in a non-thermal plasma reactor. In addition, the present study was confirmed that the effects of water vapor and CO were not noticeable compared with the hydrocarbon effects.

Catalytic Decomposition of NF3 by Thermal Decomposition and Hydrolysis of γ-Al2O3 (γ-Al2O3 촉매상에서 열분해와 가수분해에 의한 NF3 촉매분해 특성)

  • Kim, Yong Sul;Park, No-Kuk;Lee, Tae Jin
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.154-158
    • /
    • 2015
  • In this study, the catalytic activity of ${\gamma}-Al_2O_3$ was investigated for the decomposition of $NF_3$. Reactions for $NF_3$ decomposition were carried out in the range of reaction temperature of $330{\sim}730^{\circ}C$ and GHSV of $3,000{\sim}15,000mL/g-cat{\cdot}h$ in a fixed-bed catalytic reactor system. Thermal decomposition of $NF_3$ was also performed in order to compare with the catalytic decomposition of $NF_3$. The conversion of $NF_3$ by the catalytic decomposition at $400^{\circ}C$ was four times higher than that of the thermal decomposition. It was confirmed that the reaction behavior of $NF_3$ over ${\gamma}-Al_2O_3$ exhibited two reaction pathways in the presence of steam. Fluorine in $NF_3$ over ${\gamma}-Al_2O_3$ was chemically absorbed to $AlF_3$ by the gas-solid reaction in the absence of steam. The catalytic decomposition of $NF_3$ occurred by hydrolysis with steam. It was also confirmed by FT-IR analysis that $NF_3$ was completely decomposed to NOx and HF above $500^{\circ}C$.

Numerical Study on the Thermal NOx Reduction by Addition of Moisture in LNG Flame (가습 공기의 LNG 화염 Thermal NOx 저감의 수치 해석적 연구)

  • Shin, Mi-Soo;Park, Mi-Sun;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.837-842
    • /
    • 2014
  • A computer program is developed for the prediction of NO generation by the addition of water moisture and water electrolysis gas in LNG-fired turbulent reacting flow. This study is the first part to deal with the moisture effect on NO generation. In this study, parametric investigation has been made in order to see the reduction of thermal NO as a function of amount of moisture content in a LNG-fired flame together with the swirl and radiation effect. First of all, calculation results show that the flame separation together with the NO concentration separation are observed by the typical flow separation due to strong swirl flow. With a fixed amount of air, the increased amount of water moisture from 0 to 10% by 2% interval shows the decrease of NO concentration and flame temperature at exit are from $973^{\circ}C$ and 139 ppm to $852^{\circ}C$ and 71 ppm. The radiation effects on the generation on NO appears more dominant than swirl strength over the range employed in this study. However, for the strong swirl flow employed in this study, the flow separation cause the relatively high NO concentration observed near exit after peak concentration in the front side of the combustor.

An Optimization of 11kW Gas Engine for Distributed Energy Source Modified from Gasoline Engine (가솔린엔진을 개조한 분산전원용 11kW급 천연가스엔진의 성능 최적화)

  • Lee Youngae;Pyo Youngdug;Kim Gangchul;Oh Sidoek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.96-101
    • /
    • 2005
  • Cogeneration is an energy conversion process, where electricity and useful heat are produced simultaneously in one process. Also, carbon dioxide emissions can be reduced as well. The cogeneration process may be based on the use of steam, gas turbines or combustion engines. However, there have been few models with an output of less than 100 kilowatt. In the present study, a spark ignited gas engine with generation output of 10 kilowatts was developed for micro cogeneration package. The gas engine shows 29.2$\%$ of thermal efficiency under Stoichiometric combustion and 33.6$\%$ of thermal efficiency under lean combustion. NOx emission shows less than 10ppm at 13$\%$ oxygen under stoichiometric combustion and about 100ppm at 13$\%$ oxygen under lean combustion.

A study on engine performances and exhaust emissions using gasoline-methanol as an alternative fuel (대체연료로서 가솔린-메타놀 혼합연료에 의한 가솔린 기관성능과 배출오염물에 관한 연구)

  • 김희철;용기중
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-26
    • /
    • 1981
  • The purpose of this paper is to study the possibility of practical use of gasoline-methanol mixed fuel as an alternative fuel of gasoline engines in the light of engine performances and harmful exhaust emissions as well as mixings and separations of the mixed fuels. When the methanol of 99.8% purity is mixed with super or regular gasoline available on the market today, the experimental results obtained without modifying carburetor in this study are as follows; 1.The separation ratio depends upon the gasoline-methanol mixing ratio only, regardless of fuel temperature and fuel additives for preventing separation of phase. 2.The critical absorption ratio is affected by the gasoline-methanol mixing ratio, its temperature and the quantity of fuel additives. 3.Concerning the distillation temperature, the initial point of all sorts of fuels is almost same,but 10% point and 35-60% point of mixed fuels are lower than those of gasoline only. 4.In case of throttle valve opening set, engine output using the mixed fuels is decreased compared to gasoline, but thermal efficiency is increased as a consequence of decreasing specific energy consumption. 5.In case of fixed load test, thermal efficiency is increased at low engine speed even under low part-load as well as under comparatively high part-load including full load. 6.CO and NOx emissions are reduced remarkably with the mixed fuels.

  • PDF