• Title/Summary/Keyword: Thermal Imaging Technology

Search Result 172, Processing Time 0.029 seconds

Performance Comparison of Thermal Imagers with Uncooled and Cooled Detectors For Fire Fighting Application (비냉각형 적외선 센서를 이용한 열상시스템과 냉각형 적외선 센서를 이용한 열상시스템의 화재 진압 시 성능 비교)

  • Kim, Byung-Hyuk;Jung, Han;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • Thermal Imaging systems are reported to be crucial for fire fighting and beginning to be used by fire fighters. The performance of thermal imaging system is determined by both the radiation of infrared from the target and the attenuation of infrared signal in the optical path by the absorption, scattering, diffraction and reflection. In the scene of fire, water drops with various sizes such as vaporized water, wafer mist from sprinkler, and wafer to suppress the fire reside with various gas generated by burning. To measure the transmission of infrared radiation in the scene of fire, fire simulating system and thermal imagers with cooled detector which detects $3{\sim}5{\mu}m$ infrared and uncooled detector fabricated by the MEMS technology which detects $8{\sim}12{\mu}m$ infrared. are made. With thermal imagers and Ire simulating system, the change of thermal image with respect to the change of visibility controlled with the burned fas was measured. It was found that the transmission of infrared was not reduced by the burned gas, which could be explained by the long wavelength of infrared ray compared with visible ray. However, the transmission of infrared ray was largely reduced by the combination of burned gas and water mist supplied by sprinkler. This is contrary to the results of calculated transmission through the pure water mist and shows that the transmission of infrared ray is mostly affected by the compounds of water mist and burned gas. In this case, it was found that the uncooled detector which detects $8{\sim}12{\mu}m$ infrared ray is better than cooled detector which detects $3{\sim}5{\mu}m$ infrared ray for fire fighting.

Evaluation of the Functional and Non-functional Seat Sponge Effect in Sitting Chairs

  • Min, Seung Nam;Park, Se Jin;Subramaniyam, Murali;Lee, Heeran
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.255-265
    • /
    • 2014
  • Objective: The purpose of this study was to evaluate comfort levels of functional and non-functional chairs using subjective comfort rating, interface pressure measurement, muscle activity measurement, and skin temperature measurement. Background: Chairs are used for a prolonged period of time for sitting in many places such as the office, at university, at school, in industry, and so on. Almost all people use chairs in their everyday life. The functional properties of the chair are associated with comfort. Method: The subjective evaluation contains questions regarding chair comfort which can be rated with five point scale. The body-seat interface pressure was measured using a pressure mat system. The symmetry of sitting was measured using electromyography. The change in body part (thigh and buttock) temperature before and after sitting on a chair was measured with an infrared camera. Results: Participants rated significantly (p < 0.05) higher comfort scores for the functional chair in relation to the buttock and thigh region. Also, the participants felt a better cushion effect in the functional chair. When using the functional chair, lower interface pressure, better thermal comfort, and better symmetry of erector spinae muscle activity were observed. Conclusion: Overall, interface pressure measurement, muscle activity measurement, thermal imaging and subjective comfort score results showed that the functional chair was more comfortable than the non-functional chair. Application: The adopted methodologies could be used to measure the seating comfort of train seats.

Measurement of temperature profile using the infrared thermal camera in turbulent stratified liquid flow for estimation of condensation heat transfer coefficients

  • Choi, Sung-Won;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.107-107
    • /
    • 1999
  • Direct-contact condensation experiments of atmospheric steam and steam/air mixture on subcooled water flowing co-currently in a rectangular channel are carried out uszng an infrared thermal camera system to develop a temperature measurement method. The inframetrics Model 760 Infrared Thermal Imaging Radiometer is used for the measurement of the temperature field of the water film for various flow conditions. The local heat transfer coefficient is calculated using the bulk temperature gradient along the (low direction. It is also found that the temperature profiles can be used to understand the interfacial condensation heat transfer characteristics according to the flow conditions such as noncondensable gas effects, inclination effect, and flow rates.

  • PDF

A Study on the Effectiveness of Heat Infrared Imaging Method for Monitoring the Physical Condition of the Mortar Walls

  • Yoshioka Ryouhei;Tachiiri Kaoru;Asari Kimihiro;Gotoh Keinosuke
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.545-548
    • /
    • 2004
  • In Japan for protecting the slides of steep sloped areas covering the face of slopes by sprayed mortar became popular since 1970s. But, these mortar walls are getting older now. In this background, this study aims to find ways to develop a diagnostic technique of these faces of slope without physically contacting or destroying them. In doing so, we have used heat infrared imaging processing method and developed a simulation model to predict the weak portion of the wall. The results revealed that, by following the model vacuum of mortar wall can be detected having thickness up to 15cm.

  • PDF

Performance Evaluation of the Developed Diagnostic Multi-Leaf Collimator and Implementation of Fusion Image of X-ray Image and Infrared Thermography Image (개발한 진단용 다엽조리개 성능평가 및 X선영상과 적외선체열영상의 융합영상 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • We have developed and applied a diagnostic Multi-Leaf Collimator (MLC) to optimized the X-ray field in medical imaging and the usefulness evaluated through the fusion of infrared image and X-ray image acquired by infrared camera. The hand and skull radiography with multi-leaf collimator(MLC) showed significant area dose reductions of 22.9% and 31.3% compared to ARC and leakage dose was compliant with KS A 4732. Also scattering doses of 50 cm and 100 cm showed a significant decrease to confirm the usefulness of MLC. It was confirmed that the fusion of infrared images with an adjustable degree of transparency was possible in the X-ray images. Therefore, fusion of anatomical information with physiological convergence is expected to contribute and improvement of diagnostic ability. In addition, the feasibility of convergence X-ray imaging and DITI devices and the possibility of driving MLC with infrared images were confirmed.

Concrete Crack Detection Inside Finishing Materials Using Lock-in Thermography (위상 잠금 열화상 기법을 이용한 콘크리트 마감재 내부 균열 검출)

  • Myung-Hun Lee;Ukyong Woo;Hajin Choi;Jong-Chan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.30-38
    • /
    • 2023
  • As the number of old buildings subject to safety inspection increases, the burden on designated institutions and management entities that are responsible for safety management is increasing. Accordingly, when selecting buildings subject to safety inspection, appropriate safety inspection standards and appropriate technology are essential. The current safety inspection standards for old buildings give low scores when it is difficult to confirm damage such as cracks in structural members due to finishing materials. This causes the evaluation results to be underestimated regardless of the actual safety status of the structure, resulting in an increase in the number of aging buildings subject to safety inspection. Accordingly, this study proposed a thermal imaging technique, a non-destructive and non-contact inspection, to detect cracks inside finishing materials. A concrete specimen was produced to observe cracks inside the finishing material using a thermal imaging camera, and thermal image data was measured by exciting a heat source on the concrete surface and cracked area. As a result of the measurement, it was confirmed that it was possible to observe cracks inside the finishing material with a width of 0.3mm, 0.5mm, and 0.7mm, but it was difficult to determine the cracks due to uneven temperature distribution due to surface peeling and peeling of the wallpaper. Accordingly, as a result of performing data analysis by deriving the amplitude and phase difference of the thermal image data, clear crack measurement was possible for 0.5mm and 0.7mm cracks. Based on this study, we hope to increase the efficiency of field application and analysis through the development of technology using big data-based deep learning in the diagnosis of internal crack damage in finishing materials.

A Study on the quantitative measurement methods of MRTD and prediction of detection distance for Infrared surveillance equipments in military (군용 열영상장비 최소분해가능온도차의 정량적 측정 방법 및 탐지거리 예측에 관한 연구)

  • Jung, Yeong-Tak;Lim, Jae-Seong;Lee, Ji-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.557-564
    • /
    • 2017
  • The purpose of the thermal imaging observation device mounted on the K's tank in the Republic of Korea military is to convert infrared rays into visual information to provide information about the environment under conditions of restricted visibility. Among the various performance indicators of thermal observation devices, such as the view, magnification, resolution, MTF, NETD, and Minimum Resolvable Temperature Difference (MRTD), the MRTD is the most important, because it can indicate both the spatial frequency and temperature resolvable. However, the standard method of measuring the MRTD in NATO contains many subjective factors. As the measurement result can vary depending on subjective factors such as the human eye, metal condition and measurement conditions, the MRTD obtained is not stable. In this study, these qualitative MRTD measurement systems are converted into quantitative indicators based on a gray scale using imaging processing. By converting the average of the gray scale differences of the black and white images into the MRTD, the mean values can be used to determine whether the performance requirements required by the defense specification are met. The (mean) value can also be used to discriminate between detection, recognition and identification and the detectable distance of the thermal equipment can be analyzed under various environmental conditions, such as altostratus, heavy rain and fog.

Microwave-Assisted Heating of Electrospun SiC Fiber Mats

  • Khishigbayar, Khos-Erdene;Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • Flexible silicon carbide fibrous mats were fabricated by a combination of electrospinning and a polymer-derived ceramics route. Polycarbosilane was used as a solute with various solvent mixtures, such as toluene and dimethylformamide. The electrospun PCS fibrous mats were cured under a halogen vapor atmosphere and heat treated at $1300^{\circ}C$. The structure, fiber morphology, thermal behavior, and crystallization of the fabricated SiC fibrous mats were analyzed via scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal imaging. The prepared SiC fibrous mats were composed of randomly distributed fibers approximately $3{\mu}m$ in diameter. The heat radiation of the SiC fiber mats reached $1600^{\circ}C$ under microwave radiation at a frequency of 2.45 GHz.

Experimental and Numerical Methods for Thermal Conductivity of Backfill Soils for Subsea Pipeline (해저배관 뒤채움 흙의 열전도율 산정에 관한 실험 및 수치 해석적 연구)

  • Park, Dong-Su;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • The temperature of subsea pipeline, approximately as high as $100^{\circ}C$, is significantly higher than the temperature of surrounding sea water and sediment. In this reason, heat can be lost from the subsea pipeline to cause serious operation problem. Therefore it is important that the subsea pipeline must be designed to ensure that heat loss is small enough. Heat loss of unburied pipeline is higher than buried pipeline. For that purpose, trenching and backfilling system is a commonly used method for maintaining flow assurance in subsea pipeline installation. For this commonly used method, knowing thermal conductivity of backfill is essential to protect a heat loss of pipeline. This paper presents thermal conductivity of backfill soil using laboratory model test and numerical analysis for various backfill. In conclusion, it can be seen that higher the sand content of the man-made backfill sample, the higher the thermal conductivity. On the other hand, as the water content increases, the thermal conductivity becomes smaller.

Development of IR Thermal Camera Detector based on Smartphone Interlocking for Hidden Camera Crime Prevention (몰래카메라 범죄방지를 위한 스마트폰 연동 기반의 IR 열카메라 탐지기 개발)

  • Kang, Young-Gil;Cho, Pil-Gu;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • The performance of hidden camera cameras is improving day by day due to miniaturization and advanced technology integration according to the speed of technological development of smartphones. As this external networking computing environment is advanced and diversified, exposure to hidden cameras in addition to general safety cameras is also increasing. On the other hand, the technology for detecting and preventing hidden cameras is not keeping up with the development and speed of these hidden cameras. Therefore, in this study, the heat of the hidden camera was detected using infrared thermal detection technology based on general image and thermal image synthesis technology, and the reflectance of each wavelength according to the difference in ambient temperature was analyzed to reduce the false positive rate.