• Title/Summary/Keyword: Thermal Imager

Search Result 54, Processing Time 0.022 seconds

Performance Comparison of Thermal Imagers with Uncooled and Cooled Detectors For Fire Fighting Application (비냉각형 적외선 센서를 이용한 열상시스템과 냉각형 적외선 센서를 이용한 열상시스템의 화재 진압 시 성능 비교)

  • Kim, Byung-Hyuk;Jung, Han;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • Thermal Imaging systems are reported to be crucial for fire fighting and beginning to be used by fire fighters. The performance of thermal imaging system is determined by both the radiation of infrared from the target and the attenuation of infrared signal in the optical path by the absorption, scattering, diffraction and reflection. In the scene of fire, water drops with various sizes such as vaporized water, wafer mist from sprinkler, and wafer to suppress the fire reside with various gas generated by burning. To measure the transmission of infrared radiation in the scene of fire, fire simulating system and thermal imagers with cooled detector which detects $3{\sim}5{\mu}m$ infrared and uncooled detector fabricated by the MEMS technology which detects $8{\sim}12{\mu}m$ infrared. are made. With thermal imagers and Ire simulating system, the change of thermal image with respect to the change of visibility controlled with the burned fas was measured. It was found that the transmission of infrared was not reduced by the burned gas, which could be explained by the long wavelength of infrared ray compared with visible ray. However, the transmission of infrared ray was largely reduced by the combination of burned gas and water mist supplied by sprinkler. This is contrary to the results of calculated transmission through the pure water mist and shows that the transmission of infrared ray is mostly affected by the compounds of water mist and burned gas. In this case, it was found that the uncooled detector which detects $8{\sim}12{\mu}m$ infrared ray is better than cooled detector which detects $3{\sim}5{\mu}m$ infrared ray for fire fighting.

Novel Accuracy Enhancement Method for Absolute Temperature Measurement Using TEC-LESS Control in Uncooled Thermal Imaging (비냉각 열상시스템에서 TEC-Less를 이용한 절대온도 측정 정밀도 향상 기법)

  • Han, Joon Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.41-47
    • /
    • 2012
  • Every object over $O^{\circ}K$ emits radiant energy based on its own temperature. Uncooled thermal imaging system displays the detected incident radiant energy as an image by signal processing. Recently, the uncooled thermal imaging system is applied to various areas such as medical, industrial, and military applications. Also, several researches are in progress to find new applications of the uncooled thermal imaging system. In this paper, we present effective method for controlling TEC-less detector in the uncooled thermal imaging system and also present the efficient control scheme for maximizing the accuracy of temperature measurement. The proposed scheme is to apply TEC-less and temperature detection algorithm in Uncooled thermal imaging system. In results of tests performed by using the actual chamber, we acquired images of better quality than the former system and temperature measurement accuracy was improved to less than $1^{\circ}C$.

Study on the heat transfer properties of raw and ground graphene coating on the copper plate

  • Lee, Sin-Il;Tanshen, Md.R.;Lee, Kwang-Sung;Munkhshur, Myekhlai;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.78-85
    • /
    • 2013
  • A high thermal conductivity material, namely graphene is treated by planetary ball milling machine to transport the heat by increasing the temperature. Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of copper substrate with graphene. It is well known that the graphene is unable to disperse into base fluid without any treatment, which is due to the several reasons such as attachment of hydrophobic surface, agglomeration and impurity. To further improve the dispersibility and thermal characteristics, planetary ball milling approach is used to grind the raw samples at optimized condition. The results are examined by transmission electron microscopy, x-ray diffraction, Raman spectrometer, UV-spectrometer, thermal conductivity and thermal imager. Thermal conductivity measurements of structures are taken to support the explanation of heat transfer properties of different samples. As a result, it is found that the planetary ball milling approach is effective for improvement of both the dispersion and heat carriers of carbon based material. Indeed, the heat transfer of the ground graphene coated substrate was higher than that of the copper substrate with raw graphene.

Characteristics of Friction Welding of Bulk Metallic Glass Rods and Tubes (벌크 비정질 금속 봉재 및 튜브재의 마찰접합 특성)

  • Shin, Hyung-Seop;Park, Jung-Soo;Jung, Yoon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.687-692
    • /
    • 2009
  • The friction welding of Zr-based bulk metallic glass (BMG) rods and tubes to similar BMGs, and to crystalline metals were performed. An infrared thermal imager (FLIR-Thermal Cam SC-2000) was used to measure the temperature distribution at joining interface of the specimens during friction welding. All BMGs adopted in this study showed a successful friction joining to similar BMG. The shape of the protrusion formed at the weld interface were examined. In order to characterize the friction weld interface, the micrographic observation and the X-ray diffraction analysis on the weld cross-section were carried out. The obtained results were discussed based on the temperature distribution measured at the weld interface A successful joining of the BMGs to crystalline metals could be obtained for certain pairs of the material combination through the precise control of the friction condition. The residual strength after dissimilar friction welding of BMG was evaluated by the four-point bending test and compared with the cases of friction welding to similar materials.

Study on IPT Characteristics of LSR / Nano Silica Composites for HVDC (HVDC용 LSR/Nano Silica Composites의 IPT특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Only the power is converted from AC to DC, in accordance with IEC 60587 based test method, in order to develop the LSR(Liquid Silicone Rubber) insulator material for HVDC, the experiment of Inclined Plate Tracking and Erosion Resistance was conducted. A contaminant (2.5 mS/cm: ammonium chloride) was applied at a rate of 0.3 ml/min and a voltage of ${\pm}3.5kV$, and was evaluated on the basis of 60 mA/2s. The samples were prepared by dispersing LSR/Nano silica_25wt% Composites in LSR. The erosion phenomena of surface discharge and tracking due to DC polarity and negative polarity were measured by image, leakage current maximum and thermal camera. The thermal imaging camera measured the surface temperature generated by the joule heat of the leakage current due to the drying discharge and the conductive current. After the measurement, the tracking and erosion mechanisms were evaluated for erosion weight, erosion depth and erosion length. Positive and negative polarity of LSR/Nano Silica_25wt% composite Tracking and erosion results show that positive polarity is more severe than negative polarity.

Comparison of Algorithms for Sea Surface Current Retrieval using Himawari-8/AHI Data (Himawari-8/AHI 자료를 활용한 표층 해류 산출 알고리즘 비교)

  • Kim, Hee-Ae;Park, Kyung-Ae;Park, Ji-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • Sea surface currents were estimated by applying the Maximum Cross Correlation (MCC), Zero-mean Sum of Absolute Distances (ZSAD), and Zero-mean Sum of Squared Distances (ZSSD) algorithms to Himawari-8/Advanced Himawari Imager (AHI) thermal infrared channel data, and the comparative analysis was performed between the results of these algorithms. The sea surface currents of the Kuroshio Current region that were retrieved using each algorithm showed similar results. The ratio of errors to the total number of estimated surface current vectors had little difference according to the algorithms, and the time required for sea surface current calculation was reduced by 24% and 18%, relative to the MCC algorithm, for the ZSAD and ZSSD algorithms, respectively. The estimated surface currents were validated against those from satellite-tracked surface drifter and altimeter data, and the accuracy evaluation of these algorithms showed results within similar ranges. In addition, the accuracy was affected by the magnitude of brightness temperature gradients and the time interval between satellite image data.

Retrieving Volcanic Ash Information Using COMS Satellite (MI) and Landsat-8 (OLI, TIRS) Satellite Imagery: A Case Study of Sakurajima Volcano (천리안 위성영상(MI)과 Landsat-8 위성영상(OLI, TIRS)을 이용한 화산재 정보 산출: 사쿠라지마 화산의 사례연구)

  • Choi, Yoon-Ho;Lee, Won-Jin;Park, Sun-Cheon;Sun, Jongsun;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.587-598
    • /
    • 2017
  • Volcanic ash is a fine particle smaller than 2 mm in diameters. It falls after the volcanic eruption and causes various damages to transportation, manufacturing industry and respiration of living things. Therefore diffusion information of volcanic ash is highly significant for preventing the damages from it. It is advantageous to utilize satellites for observing the widely diffusing volcanic ash. In this study volcanic ash diffusion information about two eruptions of Mt. Sakurajima were calculated using the geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) and polar-orbiting satellite, Landsat-8 Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). The direction and velocity of volcanic ash diffusion were analyzed by extracting the volcanic ash pixels from COMS-MI images and the height was retrieved by adjusting the shadow method to Landsat-8 images. In comparison between the results of this study and those of Volcanic Ash Advisories center (VAAC), the volcanic ash tend to diffuse the same direction in both case. However, the diffusion velocity was about four times slower than VAAC information. Moreover, VAAC only provide an ash height while our study produced a variety of height information with respect to ash diffusion. The reason for different results is measured location. In case of VAAC, they produced approximate ash information around volcano crater to rapid response, while we conducted an analysis of the ash diffusion whole area using ash observed images. It is important to measure ash diffusion when large-scale eruption occurs around the Korean peninsula. In this study, it can be used to produce various ash information about the ash diffusion area using different characteristics satellite images.

Development of Friction Welding Process of Zr-based Bulk Metallic Glasses (Zr-기 벌크 금속 유리의 마찰 접합 공정 개발)

  • Shin, Hyung-Seop;Jeong, Young-Jin;Kim, Ki-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.337-341
    • /
    • 2004
  • Bulk metallic glasses(BMG) with good mechanical properties have problems that engineering application fields have been limited because of limitation of the alloy size. In order to solving this problem, the friction welding of BMG has been tried using the superplastic-like deformation behavior under the supercooled liquid region. The apparatus for friction welding test was designed and constructed using pneumatic cylinder and gripper based on a conventional lathe. Friction welding have been tried to combination of same BMG alloy and crystalline alloys. The results of welding test were evaluated by X-ray diffraction, measurement of hardness and mechanical properties test. In order to obtain the optimized welding test conditions the temperature of friction interface was measured using Infrared thermal imager.

  • PDF

An Investigation on Combustion Characteristics of Hydrogen-Air Premixture in a Sub-millimeter Scale Catalytic Combustor using Infrared Thermography (적외선 열화성 온도 측정법을 이용하여 살펴본 서브밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.17-24
    • /
    • 2005
  • A sub-millimeter scale catalytic combustor with a simple plate-shaped combustion chamber was fabricated. A porous ceramics support coated with platinum catalyst was placed in the chamber. The combustor has a gallium arsenide window on the top that is transparent to infrared ray. The temperature distribution in the combustion chamber was measured using infrared thermal imager while hydrogen-air premixture is steadily supplied to the combustor. The area where the catalytic reaction took place broaden for higher flow rate and lower equivalence ratio made activated area in the combustion chamber broaden. The amount of coated platinum catalyst did not affect the reaction. Stop of reaction, which is similar to flame quenching of conventional combustion, was investigated. Large content of heat generation and broad activated area are essential criteria to prevent stop of reaction that has a bad effect on the combustor performance.

  • PDF

The Comparison of X-ray Response Characteristics of Vacuum Evaporated (진공증착된 CdTe와 $Cd_{0.85}Zn_{0.15}Te$ 필름의 X선 반응특성 비교)

  • Kang, S.S.;Choi, J.Y.;Cha, B.Y.;Moon, C.W.;Kim, J.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.845-848
    • /
    • 2002
  • The study of photoconductor materials is demanded for development for flat-panel digital x-ray Imager. In this paper, We investigated the feasibility of application as x-ray image sensor using Cd(Zn)Te compound with high stopping power on high radiation. These Cd(Zn)Te samples were fabricated by vacuum thermal evaporation method to large area deposition and investigated I-V measurement as applied voltage. The experimental results show that the additional injection Zn in CdTe film reduced the leakage current, for the $Cd_{0.85}Zn_{0.15}Te$ detector, the net charge had the highest value as $144.58pC/cm^2$ at 30 V.

  • PDF