• 제목/요약/키워드: Thermal Flow Analysis

Search Result 1,509, Processing Time 0.03 seconds

Structure and Properties of Cation Exchange Membrane made of Sulfonated Polyethersulfone

  • Nah, Sung-Soon;Lee, Sung-Min;Ryul, Min-Byung;Lee, Chang-So
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1999년도 The 7th Summer Workshop of the Membrane Society of Korea
    • /
    • pp.115-115
    • /
    • 1999
  • In this work a new process was developed for the sulfonation of the chemicallly stable engineering polymer polyethersulfone as membrane materials for electrodialysis or a flow battery applications. Commercially available polyethersulfone polymer was partially sulfonated using a CSA sulfonating agent in a dichloromethane solvent, which sulfonated polyethersulfone with various sulfonation levels have been prepared. Sulfonated polyethersulfone (SPES) membranes with different ion capacities were prepared for the purpose of identifying cation exchange membrane properties, in an attempt to find a low cost replacement for Nafion, which most of the perfluorinated membranes, known to exhibit a prolonged service life, are expensive and difficult to process. The following features were determined: the degree of sulfonation, water uptake, thermal analysis, and electrochemical properties such as ion exchange capacities, resistivity, selectivity of ion permeation. The surface of the cation exchange membranes, decomposed with the H202-treatment, were observed by using scanning electron microscope. The area resistivities of SPES mebranes in 5N-NaOH decreased from $2,150{\;}{\Omega}-cm2$ to less than $15{\Omega}-cm2$ as the ion exchange capacity (IEC) increased from 0.62 to 1.73 millieequivlants per dry gram(meq/dg).eq/dg).

  • PDF

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

Carbonation Behavior of Fly Ash with Circulating Fluidized Bed Combustion (CFBC)

  • Bae, Soon Jong;Lee, Ki Gang
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.154-158
    • /
    • 2015
  • This paper investigates the reaction rates of $CO_2$ that stores carbonation through comparing the carbonation behavior between $Ca(OH)_2$ and fly ash with circulating fluidized bed combustion (CFBC) containing a large amount of free CaO. Because fly ash with CFBC contains abundant free CaO, it cannot be used as a raw material for concrete admixtures; hence, its usage is limited. Thus, it has been buried until now. In order to consider its reuse, we conduct carbonation reactions and investigate its rates. X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA), and X-ray fluorescence (XRF) are conducted for the physical and chemical analyses of the raw materials. Furthermore, we use a PH meter and thermometer to verify the carbonization rates. We set the content of the fly ash of CFBC, $Ca(OH)_2$, $CO_2$ flow rate, and water to 100 ~ 400 g, 30 ~ 120 g, 700 cc/min, and 300 ~ 1200 g, respectively, based on the content of the free CaO determined through the TG/DTA analyses. As a result, the carbonization rate of the fly ash with CFBC is the same as that of $Ca(OH)_2$, and it tends to increase linearly. Based on these results, we investigate the carbonization behavior as a function of the free CaO content contained in the raw material.

도전성 분말에 의한 아크전류의 파형 및 실효값 특성 (Characteristics on Arc Waveform and RMS of Current by Conductive Powder)

  • 김두현;강양현
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.63-68
    • /
    • 2013
  • This paper is aimed to make an analysis on characteristics of the parallel arc waveform and RMS of current at the electrical tracking state by conductive powder. In order to achieve the goal in this paper, field state investigation at metal processing companies in Chung-Nam province area was conducted. With the field state investigation, conductive powder were collected from metal processing companies. By experiment on electrical connector(breaker, connector) over which the conductive powder were scattered, arc waveform and RMS of current were measured. The measured waveform and RMS(root-mean-square) of current were analyzed to describe characteristics and patterns of electrical arc by the conductive powder. It was proved that conductive powder on electrical connector can flow electrical current enough to make electrical fire with high thermal energy. Also the change of sine waveform and RMS of current can be used to find out relationship between electrical fire and fault signal by conductive powder. The results obtained in this paper will be very helpful for the prevention of electrical fires occurred at the metal processing companies.

A Design Criteria of Ventilation Holes to Reduce a Vapor Condensation on the Balcony Walls in Apartment Housings

  • Lee, Jong-Sung;Kim, Jong-Yeob;Hwang, Ha-Jin;Lee, Sung-Bok
    • 토지주택연구
    • /
    • 제2권4호
    • /
    • pp.463-469
    • /
    • 2011
  • LH has installed sashes to the balcony to save energy and increase residential space. Then, it is very difficult to protect a condensation of vapor on the walls in the winter time, because the space is closed and the wall surface temperature becomes very low in a balcony. We have tried to get the optimal thermal design methods to reduce the condensation on the walls. The one of the chosen method is to make holes on the walls, and then the condensation shall be reduce because the dew point temperature will be lower due to the effect of dehumidify. In this case, it is just necessary to find as like that how many holes should be perforated through the wall, what's their size, and where is their positions. In this study, a computational fluid dynamics was applied to analyze the temperature, the pressure and the velocity distribution for an incompressible flow in the balcony spaces. And field tests were also carried out to get the data to compare to the simulation results. Finally the design criteria of the ventilation holes in the balconies was suggested by analysis of the computer simulation models.

가속노화에 따른 BKNO3의 아레니우스 동역학 상수 분석 (Arrhenius Kinetic Constants Analysis of BKNO3 under Accelerated Aging)

  • 장승교;김준형;류병태;황정민
    • 한국추진공학회지
    • /
    • 제20권4호
    • /
    • pp.34-39
    • /
    • 2016
  • 열분석기인 시차 주사 열량계를 이용하여 $BKNO_3$ 화약의 아레니우스(Arrhenius) 동역학 상수인 활성화 에너지와 Pre-Exponential Factor를 구하였다. 기존의 방법과 달리 고온 가속 노화와 DSC를 병행하여 보다 정밀한 활성화 에너지를 구하였고 열 유속의 적분값을 비교하여 저장 온도에 따른 분율을 구하였다. 이를 통하여 수명 예측을 위한 $BKNO_3$ 화약의 가속노화 시험 조건을 제시하고 열 가속노화에 관한 의미를 재고하였다.

Influence of Thermodynamic Properties upon Transcritical Nitrogen Injection

  • Tani, Hiroumi;Teramoto, Susumu;Nagashima, Toshio
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.320-329
    • /
    • 2008
  • The influence of thermodynamic transition associated with transcritical nitrogen injection upon the flow structure was investigated to explore numerical simulation of the injectant dynamics of oxygen/hydrogen coaxial jet in liquid rocket engines. Single and coaxial nitrogen jets were treated by comparing the transcritical and perfect-gaseous conditions, wherein the numerical model was accommodative to the real-fluid thermodynamics and transport properties at supercritical pressures. The model was in the first place validated by comparing the results of transcritical nitrogen injection between calculations and available experiments. For a single jet under the transcritical condition, the nitrogen kept a relatively high density up to its pseudo-critical temperature inside the mixing layer, since it remains less expanding until heated up to its pseudo-critical temperature. Numerical analysis revealed that cryogenic jets exhibit strong dependence of specific enthalpy profile upon the associated density profile that are both dominated by turbulent thermal diffusion. In the numerical model, therefore, exact evaluation of turbulent heat fluxes becomes very important for simulating turbulent cryogenic jets under supercritical pressures. Concerning the coaxial jets due to transcritical/gaseous nitrogen injections, the density profile inside the mixing layer was again affected by the thermodynamic transition of nitrogen. However, hydrodynamic instability modes of the inner jet did not show significant differences by this thermodynamic transition, so that further study is needed for the mixing process downstream of the near injection position.

  • PDF

밀집형 재생증발식 냉방기의 냉각 성능 분석 (Analysis of Cooling Performance of a Compact Regenerative Evaporative Cooler)

  • 박민희;문승재;이대영
    • 설비공학논문집
    • /
    • 제28권8호
    • /
    • pp.316-324
    • /
    • 2016
  • This study investigated a compact regenerative evaporative cooler (REC). To achieve practical applications of an REC, it is very important to consider the compactness as well as the cooling performance. Therefore, a prototype of the REC was designed and fabricated to improve the compactness by reducing the length through the insertion of fins in both the dry and wet channels. The REC prototype was tested in terms of performance evaluation under various operating conditions. An analytical model was also developed to analyze the effects of the axial conduction through the solid body of the REC, the wetness of the surface in the wet channel, and the thermal capacity of the evaporation water flow. The model was validated by comparing the results of a simulation with experimental data. The numerical simulation was based on the model to analyze the performance of the REC and to suggest methods to improve the cooling performance of the REC. Finally, the performance of the present REC was compared to that obtained in previous experimental studies. The results showed that the REC prototype in the present study is the most compact and achieves the highest cooling performance.

개스 Inflow와 Upflow를 갖는 Debris/water/concrete상호작용 해석용 Debris Bed 모델 및 중대사고 조건에 그 적용해석 (A Debris Bed Model with Gab Inflow and Gas Upflow for Debris/Water/Concrete Interaction and Its Application under Severe Accident Condition in LWR.)

  • Jong In Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 1985
  • Debris bed내·외로부터 깨스유량을 갖는 debris/water 열적상호작용 해석모델이 중대사고 분석을 위해 제시되었다. 제시된 모델은 증기 소비, debris bed에서 수소 생성, 유입깨스 및 화학반응열에 대한 인자들을 포함하고 있으며, 금속-물반응 및 debris/concrete 작용으로 인한 깨스 생성을 평가하기 위해 MARCH code에 도입시켰다. 그 결과 수소원은 격납용기 과도압력에 큰 영향을 미치나 debris bed로 대류깨스 냉각과 콘크리트로 전도 열손실은 debris bed 냉각성에 조그마한 영향을 주는 것으로 나타났다. 하지만 debris 인자의 재가열과 재용융은 콘크리트와 상호작용에 의해 상당히 지연될 수 있다.

  • PDF

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.