• Title/Summary/Keyword: Thermal Flow Analysis

Search Result 1,508, Processing Time 0.04 seconds

A Study on the Thermal Flow Analysis for Heat Performance Improvement of a Wireless Power Charger (열 유동해석을 통한 무선충전기 발열 성능 향상에 관한 연구)

  • Kim, Pyeong-Jun;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.310-316
    • /
    • 2019
  • In automotive application, customers are demanding high efficiency and various functions for convenience. The demand for these automotive applications is steadily increasing. In this study, it has been studied the analysis of heat flow to improve the PCB(printed circuit board) heating performance of WPC (wireless power charger) recently developed for convenience. The charging performance of the wireless charger has been reduced due to power dissipation and thermal resistance of PCB. Therefore, it has been proposed optimal PCB design, layout and position of electronic parts through the simulation of heat flow analysis and PCB design was analyzed and decided at each design stage. Then, the experimental test is performed to verify the consistency of the analysis results under actual environmental conditions. In this paper, The PCB modeling and heat flow simulation in transient response were performed using HyperLynx Thermal and FloTHERM. In addition, the measurement was performed using infrared thermal imaging camera and used to verify the analysis results. In the final comparison, the error between analysis and experiment was found to be less than 10 % and the heating performance of PCB was also improved.

Performance Analysis of Moving Bed Heat Exchanger of Solid Particles in a Vertical Pipe (고체입자 이동층을 이용한 수직 전열관 열교환기의 성능해석)

  • Park, Sang-Il;Choe, Gyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2916-2923
    • /
    • 1996
  • A numerical analysis of the moving bed heat exchanger of solid particles inside the vertical pipe was performed using finite difference method. Also, the theoretical solutions were obtained for comparison when the wall heat flux or the wall temperature was assumed constant. The comparison showed that their results agreed well each other. The moving bed heat exchanger was classified as countercurrent-flow, parallel-flow, and cross-flow types according to the gas flow direction. For each type, the thermal efficiency of heat exchanger was calculated as a function of non-dimensional parameters such as the characteristic length of heat exchanger, Biot number and the ratio of thermal capacities of gas and solid particles.

Analysis of gas flow and thermal deformation in a muffler (머플러의 유체 유동 및 연성 변형 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • Car muffler has the role to form the exhaust gas from high temperature- pressure to lower level and reduce the generated noise. Because of this role, its durability decrease as deformation by heat is occurred. This study is to analyze the flow of exhaust gas inside muffler and its coupled thermal deformation with 3-D modeling and ANSYS. There is the fastest flow at the exit of muffler with the maximum velocity of 54 m/s. And the maximum deformation or equivalent stress is shown at this model respectively as 0.00435 mm or 3414.4 MPa by the influence of heat and pressure at part of intersection with inlet and body of muffler.

A numerical study on the characteristics of a thermal mass air flow sensor with periodic heating pulses (주기 발열 파형을 이용한 열식 질량 유량계의 특성에 관한 수치적 연구)

  • Jeon, Hong-Kyu;Oh, Dong-Wook;Park, Byung-Kyu;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2482-2487
    • /
    • 2007
  • Numerical simulations are conducted for the analysis of a thermal mass air flow sensor with periodic heating pulses on silicon-nitride ($Si_3N_4$) thin membrane structure. This study aims to find the locations of temperature sensors on the thin membrane and the heating pulse conditions, that the higher sensitivity can be achieved, for the development of a MEMS fabricated mass air flow sensor which is driven in periodic heating pulse. The simulations, thus, focus on the membrane temperature profile according to variation of the flow velocity, heating duration time and imposed power. The flow velocity of the simulations is ranging from 3 m/s to 35 m/s, heating duration time from 1 ms to 3 ms and imposed power from 50 mW to 90 mW. The corresponding Reynolds numbers vary from 1000 to 10000.

  • PDF

CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment

  • Ye, Linrong;Yu, Hao;Wang, Mingjun;Wang, Qianglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • Multi-dimensional coupling analysis is a research hot spot in nuclear reactor thermal hydraulic study and both the full-scale system transient response and local key three-dimensional thermal hydraulic phenomenon could be obtained simultaneously, which can achieve the balance between efficiency and accuracy in the numerical simulation of nuclear reactor. A one-dimensional to three-dimensional (1D-3D) coupling platform for the nuclear reactor multi-dimensional analysis is developed by XJTU-NuTheL (Nuclear Thermal-hydraulic Laboratory at Xi'an Jiaotong University) based on the CFD code Fluent and system code RELAP5 through the Dynamic Link Library (DLL) technology and Fluent user-defined functions (UDF). In this paper, the International Standard Problem (ISP) No. 43 is selected as the benchmark and the rapid boron dilution transient in the nuclear reactor is studied with the coupling code. The code validation is conducted first and the numerical simulation results show good agreement with the experimental data. The three-dimensional flow and temperature fields in the downcomer are analyzed in detail during the transient scenarios. The strong reverse flow is observed beneath the inlet cold leg, causing the de-borated water slug to mainly diffuse in the circumferential direction. The deviations between the experimental data and the transients predicted by the coupling code are also discussed.

Computational Thermal Flow Analysis of a Cabin Cooler for a Commercial Vehicle (상용차용 캐빈냉방기의 전산 열유동 해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2012
  • The steady three-dimensional computational thermal flow analysis using standard k-${\varepsilon}$ turbulence model was carried out to investigate the heat transfer characteristics of a cabin cooler for a commercial vehicle. The heat exchanging method of this cabin cooler is to use the cooling effect of a thermoelectric module. In view of the results so far achieved, the air system resistance of a cabin cooler is about 12.4 Pa as a static pressure, and then the operating point of a cross-flow fan considering in this study is formed in the comparatively low flowrate region. The air temperature difference obtained from the cold part of an thermoelectric module is about $26^{\circ}C$, and the cooling water temperature difference obtained from the hot part of an thermoelectric module is about $3.5^{\circ}C$.

Study on Thermal Stress and Flow Analysis at Exhaust Manifold of Car (자동차 배기 매니폴드에 있어서의 열응력과 유동해석에 관한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • This study investigates fluid flow and thermal stress at automotive exhaust manifolds as model 1 and 2. The maximum displacements happen at joint part connected with 4 pipes and upper middle of both parts in cases of model 1 and 2 respectively. At inner surface of the part connected with engine, maximum equivalent stresses of 991.85 and 698.96 MPa are shown in cases of model 1 and 2 respectively. As maximum velocities at the outlet at model 1 are shown at 19.46 and 14.61 m/s in cases of model 1 and 2 respectively, model 1 has more pressure drop than model 2. As result, model 2 has less pressure drop than 1. Model 2 has less deformation and stress than model 1. Model 2 has also less pressure drop than model 1. Therefore model 2 has more strength durability than model 1. This study result is applied with the design of safe automotive manifold and it can be useful to improve the durability by predicting prevention against the deformation due to exhaust gas.

Study on Characteristics of Subchannel Analysis Code at Low Flow Steam Line Break Condition

  • Kwon, Hyuk-Sung;Lim, Jong-Seon;Hwang, Dae-Hyun;Chun, Tae-Hyun;Park, Jong-Ryul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.403-408
    • /
    • 1996
  • The subchannel analysis was performed to verify the behavior of hot channel characteristics and obtain the information to support the core thermal-hydraulic behavior at post-trip steam line break with low flow condition. During this postulated accident, buoyancy-induced cross flow occurs, and the coupled nuclear and thermal-hydraulic interactions become important. The code predictions with TORC are in good agreement with the test data. Under such conditions, the mass flow increase in the hot channel by buoyancy-induced cross flow depends on the parameter $GR^{*}\;/\;Re^2$, and buoyancy effect becomes more noticeable as $GR^{*}\;/\;Re^2$ increases.

  • PDF

Prediction of Serrated Chip Formation due to Micro Shear Band in Metal (미소 전단 띠 형성에 의한 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

A Study on the Leakage Analysis of Scroll Compressor with Thermal Deformation Considered (열변형을 고려한 스크롤 압축기의 누설 해석에 관한 연구)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2428-2437
    • /
    • 2000
  • In general, it is known that the portion of leakage loss is more than 20 % of total loss in scroll compressor. So far many studies have been done to improve the leakage problem and volumetric efficiency. In order to do this it is necessary that the leakage is exactly evaluated for conventional scroll model. Almost all studies that have been done were assumed that the clearance remains constant while operating. But in actual operating conditions, scroll wrap is deformed due to elevated refrigerant gas temperature. And this makes the leakage clearance change, so the leakage mass flow and the volumetric efficiency are also changed. In this study we assumed the steady state operating condition and obtain the average temperature and convection heat transfer coefficient in terms of involute angle. With these results, using finite element method we analyzed the heat transfer of scroll wrap, then did thermal deformation analysis. Then we obtain the leakage clearance and do the leakage and volumetric efficiency analysis. Compared with undeformed feature, we examine the effect of the thermal deformation on the leakage. The results say that the leakage mass flow for the case of considering thermal deformation is less than that for the unconsidered one, and this means that the leakage clearance is reduced due to thermal deformation.