• 제목/요약/키워드: Thermal Fatigue

검색결과 573건 처리시간 0.025초

화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석 (Service Life Analysis of Control Valve for Automatic Turbine Startup of Thermal Power Plant)

  • 김효진;강용호;신철규;박희성;유봉호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.7-12
    • /
    • 2000
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable ${\Delta}T$ limit curve during the startup. Because allowable ${\Delta}T$ limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage and combined rupture and low cycle fatigue damage criterion proposed for yielding the allowable ${\Delta}T$ limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has peformed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ${\Delta}T$ limit curve.

  • PDF

화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석 (Service Life Analysis of Control Valve far Automatic Turbine Startup of Thermal Power Plant)

  • 김효진;강용호
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2002
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable △T limit currie during the startup. Because allowable ΔT limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage, combined rupture and low cycle fatigue damage criterion were proposed for yielding the allowable ΔTf limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has been performed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ΔT limit curve.

Effect of thermal aging on the mechanical, intergranular corrosion and corrosion fatigue properties of Z3CN20.09M cast duplex stainless steel

  • Ti, Wenxin;Wu, Huanchun;Xue, Fei;Zhang, Guodong;Peng, Qunjia;Fang, Kewei;Wang, Xitao
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2591-2599
    • /
    • 2021
  • The effect of thermal aging at 475 ℃ and 750 ℃ of Z3CN20.09M cast duplex stainless steel (CDSS) on microstructure, mechanical and intergranular corrosion properties were investigated by transmission electron microscope (TEM), nano indenter, scanning electron microscope (SEM) and corrosion fatigue test system. The result indicated that the spinodal decomposition and G precipitated were occurred after aged at 475 ℃, as well as sigma precipitated at 750 ℃. The microstructure degeneration of ferrite was saturated after aged for 2000h and 200 h at 475 ℃ and 750 ℃ respectively. The mechanical properties, intergranular corrosion resistance and corrosion fatigue lives were continuing deteriorated with increasing the aging time at both temperatures. The difference of the degeneration mechanisms of Z3CN20.09M CDSS aged at 475 ℃ and 750 ℃ was analyzed.

잔류응력 변화를 고려한 철도차량 차륜의 접촉피로 수명평가 (A Study on the Contact Fatigue Life Evaluation for Railway Wheels Considering Residual Stress Variation)

  • 서정원;구병춘;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1391-1398
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheelset life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking heat are two main mechanisms of the railway wheel failure. In this paper, an evaluation procedure for the contact fatigue life of railway wheel is proposed. One of the main sources of the contact zone failure is the residual stress. The residual stress on wheel is formed during the manufacturing process which includes a heat treatment, and then is changed by contact stress developed by wheel/rail contact and thermal stress induced by braking. Also, the cyclic stress history for fatigue analysis is determined by applying finite elements analysis for the moving contact load. The objective of this paper is to estimate fatigue life by considering residual stress due to heat treatment, braking and repeated contact load, respectively.

A review of fatigue failures in LWR plants in Japan

  • Kunihiro, Iida
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1996년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.19-34
    • /
    • 1996
  • A review was made of fatigue failures of nuclear power plant components in Japan, which were experienced in service and during periodical inspection. No case has been recently reported of a service fatigue failure of a reactor pressure vessel itself, excluding nozzle corner cracks, that occurred many years ago. But, service fatigue failures have been occasionally experienced in piping systems, pumps, and valves, on which fatigue design seems to have been inadequately applied. The causes of fatigue failures can be divided into two categories: mechanical-vibration-induced fatigue and thermal-fluctuation-induced fatigue. Vibration-induced fatigue failure occurs more frequently than is generally thought. The lesson gleaned from the present survey is a recognition that a service fatigue failure may occur due to any one or a combination of the following factors: (1) lack of communication between designers and fabrication engineers, (2) lack of knowledge about a possibility of fatigue failure and poor consideration about the effects of residual stresses, (3) lack of consideration on possible vibration in the design and fabrication stages, and (4) lack of fusion or poor penetration in a welded joint.

  • PDF

SURGE LINE STRESS DUE TO THERMAL STRATIFICATION

  • Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.239-250
    • /
    • 2008
  • If there is a water flow with a range of temperature inside a pipe, the wanner water tends to float on top of the cooler water because it is lighter, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, such thermal stratification can play an important role in the aging of nuclear power plant piping because of the stress caused by the temperature difference and the cyclic temperature changes. This stress can limit the lifetime of the piping, even leading to penetrating cracks. Investigated in this study is the effect of thermal stratification on the structural integrity of the pressurizer surge line, which is reported to be one of the pipes most severely affected. Finite element models of the surge line are developed using several element types available in a general purpose structural analysis program and stress analyses are performed to determine the response characteristics for the various types of top-to-bottom temperature differentials due to thermal stratification. Fatigue analyses are also performed and an allowable environmental correction factor is suggested.

$Al/{Al_2}{O_3}$금속복합재료의 기계적 성질과 피로거동 (Mechanical Property and Fatigue Bahavior of $Al/{Al_2}{O_3}$ Metal Matrix Composite)

  • 송정일;임홍준;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.753-764
    • /
    • 1996
  • The metal matrix composites(MMC) are currently receiving a great deal of attention. These composites possess exellent mechanical and physical properties such as modulus, strength, wear resistance and thermal stability, which make them very attractive for use in automotive piston. In this study, $Al/{Al_2}{O_3}$(15%) composites are fabricated by the squeeze casting method. Mechanical properties such as tensile strength and ductility are performed at room and elevated temperature($250^{\circ}C$ and $350^{\circ}C$), respectively. Through thermomechanical analyser, thermal expansion coefficient of $Al/{Al_2}{O_3}$ composites are conducted for ranging from room temperature to ($400^{\circ}C$.And bending fatigue tests are also performed by the rotary bending machine at room temperature.The tensile strength and elastic modulus have been improved up to 38% and 35% by the addition of the reinforcements, respectively. Thermal expansion coefficients of MMCs which is located normal and parralel to the applied pressure are showed slightly different less than 10%. Fatigue strengh of the composite was improved by about 20% compared with that of unreinforced Al alloy. The results of this study will be used to understand the basic fracture behavior of MMCs and eventually to expand the applocation of MMCs as a machine parts undertaken various loadings.

재료에 따른 반도체 압력 센서 배선의 피로 수명 평가에 관한 연구 (A Study of Fatigue Lifetime Evaluation on the Interconnect of Semiconductor Pressure Sensor According to the Various Materials)

  • 심재준;한동섭;한근조;이상석
    • 한국항해항만학회지
    • /
    • 제29권10호
    • /
    • pp.871-876
    • /
    • 2005
  • 기존의 기계적인 센서들보다 높은 민감도와 선형성을 가지는 반도체 압력 센서들은 크기가 작고 일괄공정에 의해 제작될 수 있는 반도체 공정 기술로 제작되므로 다양한 산업에서 적용되고 있다. 하지만 열과 반복적인 외부 하중은 센서의 수명에 치명적인 영향을 미치고 있고, 특히 외부에서 가해지는 열은 센서를 구성하는 구조물보다 신호를 전달하는 금속 배선의 피로 수명에 지대한 영향을 미치고 있으므로 이에 대한 영향성을 분석할 수 있는 프로세스를 확립하고, 이후 다양한 재료의 반복적인 열하중에 대한 피로 수명을 Manson & Coffin식에 따라서 평가하였다. 금속 배선의 밑단에서 피로수명이 가장 낮고, 굽힘하중은 피로 수명보다는 응력분포에 큰 영향을 미치고 있다.

다층 박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로파괴 수명 해석 (Fatigue Life Analysis for Solder Joint of Optical Thin Film Filter Device)

  • 김명진;이형만
    • 마이크로전자및패키징학회지
    • /
    • 제10권2호
    • /
    • pp.19-26
    • /
    • 2003
  • 광통신용 광학부품의 신뢰성 특성은 솔더 조인트의 열 사이클에 따른 소성(Plastic)과 크립(Creep) 변형에 가장 큰 영향을 받는다. 열 사이클에 따른 소성과 크립 변형 증가로 인해 정렬 틀어짐이 발생하며 이는 광손실 변화의 주요인이 된다. 또한, 소성과 크립 변형량이 증가 또는 계속 누적이 될 경우 솔더의 피로수명 한계로 인해 제품 불량 발생의 원인이 된다. 이러한 열적 사이클에 따른 광부품의 신뢰성을 확보하기 위해 본 논문에서는 유한요소해석법(FEM)을 적용하였다. 소성과 크립 변형의 변화량을 유한요소해석으로 계산하고 이를 크립 피로 파괴(Creep-Fatigue) 수명 예측 모델에 적용하여 그 수명을 예측하였다. 솔더와 모재와의 계면 또는 솔더 내부에서 생성되는 온도에 따른 소성과 크립 변형을 파악하기 위해 텔코디아(Telcordia)의 광부품 신뢰성 온도 사이클(-40 to 75)을 적용하였다. 승온과 냉각 속도의 변화에 따른 영향을 검토하기 위해 1/min, 10/min 및 50/min으로 변화를 주고 유지 시간을 1시간으로 고정할 경우의 결과를 비교 분석하였다.

  • PDF