• Title/Summary/Keyword: Thermal Energy Need

Search Result 181, Processing Time 0.026 seconds

Optimum Method of Windows Remodeling of Existing Residential according to the Window Properties and Window Wall Ratio (창호의 성능 및 건물의 창면적비에 따른 기존 단독주택의 창호 리모델링 방안 연구)

  • Lee, Na-Eun;Ahn, Byung-Lip;Jeong, Hak-Geun;Kim, Jong-Hun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.71-78
    • /
    • 2013
  • A need for building energy efficiency is on the issue since energy demand in the building stock in Korea represents about 24% of the final energy consumption. As a way of improving the thermal performance of buildings for reducing maintenance costs and environmental conservation, a lot of effort is shown to improve the building energy efficiency by applying improvement of envelope insulation performance for buildings whose energy efficiency is low relatively through the remodeling. The windows of building envelopes are areas that lead to the biggest heat loss in the building. So windows are considered to be the primary target of energy efficiency in remodeling and various studies for windows have been done. Currently, however, only U-factor and airtightness of windows performance are regulated. Window wall ratio(WWR) and solar heat gain coefficient(SHGC) of windows are not considered when conducting the remodeling. In this study appropriate performance of windows(U-factor and SHGC) for existing residential is proposed according to the window wall ratio by using EnergyPlus. As the results of this study, the U-factor of windows representing the maximum energy savings is $1.0W/m^2K$ but in case of SHGC, the values that indicate the maximum energy savings are different depending on the window wall ratio. Therefore, when conducting the remodeling of windows, to determine energy efficiency by considering only the U-factor is inadequate so it is necessary that appropriate windows are applied to buildings by considering window wall ratio and windows properties(U-factor and SHGC).

Effect of Residual Droplet on the Solution-Grown SiC Single Crystals (상부종자 용액 성장에 있어 성장결정상 잔류액적의 영향)

  • Ha, Minh-Tan;Shin, Yun-Ji;Bae, Si-Young;Yoo, Yong-Jae;Jeong, Seong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.516-521
    • /
    • 2019
  • The top seeded solution growth (TSSG) method is an alternative technique to grow high-quality SiC crystals that has been actively studied for the last two decades. However, the TSSG method has different issues that need to be resolved when compared to the commercial SiC crystal growing method, i.e., physical vapor transport (PVT). A particular issue of the TSSG method of results from the presence of liquid droplets on the grown crystal that can remain even after crystal growth; this induces residual stress on the crystal surface. Hence, the residual droplet causes several unwanted effects on the crystal such as the initiation of micro-cracks, micro-pipes, and polytype inclusions. Therefore, this study investigated the formation of the residual droplet through multiphysics simulations and lead to the development of a liquid droplet removal method. As a result, we found that although residual liquid droplets significantly apply residual stress on the grown crystal, these could be vaporized by adopting thermal annealing processes after the relevant crystal growing steps.

A Study on the Low-energy Large-aperture Electron Beam Generator (저에너지 대면적 전자빔 발생장치 개발에 관한 연구)

  • Jo, Ju-Hyeon;Choe, Yeong-Uk;Lee, Hong-Sik;Im, Geun-Hui;U, Seong-Hun;Lee, Gwang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.785-790
    • /
    • 1999
  • This research has been carried out to develop a low-energy large-aperture pulsed electron beam generator (LELA), 200keV 1A, for industrial applications. One of the most important feature of this electron beam generator is large electron beam cross section of $190cm^2$. Low energy electron beam generators have been used for water cleaning, flue gas cleaning, and pasteurization, etc. In these applications the cross sectionof the e-beam is related to reaction efficiency. Another important feature of this LELA EB generator is easy maintenance because of its simple structure and relatively low vacuum operation compared to the conventional EB generators. The conventional EB generators need to be scanned because the small cross section thermal electron emitters are used in the conventional EB generators which have small EB cross section. In this research, we use the secondary electrons generated by ion bombardment on the HV cathode surface as a electron source. Therefore we can make any shape of EB cross section without scanning.

  • PDF

Prediction of Critical Heat Flux in Fuel Assemblies Using a CHF Table Method

  • Chun, Tae-Hyun;Hwang, Dae-Hyun;Bang, Je-Geon;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.534-539
    • /
    • 1997
  • A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor.

  • PDF

High Frequency and High Luminance AC-PDP Sustaining Driver

  • Choi Seong-Wook;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • Plasma display panels (PDPs) have a serious thermal problem, because the luminance efficiency of a conventional PDP is about 1.5 1m/W and it is less than $3\~5\;lm/W$ of a cathode ray tube (CRT). Thus there is a need for improving the luminance efficiency of the PDP. There are several approaches to improve the luminance efficiency of the PDP and we adopted a driving PDP at high frequency range from 400kHz up to over 700kHz. Since a PDP is regarded as an equivalent inherent capacitance, many types of sustaining drivers have been proposed and widely used to recover the energy stored in the PDP. However, these circuits have some drawbacks for driving PDPs at high frequency ranges. In this paper, we investigate the effect of the parasitic components on the PDP itself and on the driver when the reactive energy of the panel is recovered. Various drivers are classified and evaluated based on their suitability for high frequency drivers. Finally, a current-fed driver with a DC input voltage bias is proposed. This driver overcomes the effect of parasitic components in the panel and driver. It fully achieves a ZVS of all full-bridge switches and reduces the transition time of the panel polarity. It is tested to validate the high frequency sustaining driver and the experimental results are presented.

A Study on Selection of Pipe Materials Considering EWT (EWT를 고려한 지중열교환기 파이프 선정에 관한 연구)

  • Ryu, Hyung-Kyou;Chung, Min-Ho;Lee, Byung-Seok;Choi, Hyun-Jun;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2014
  • This paper proposes an optimum pipe material (PVC vs. PE) design & selection for open loop ground heat exchangers. Heat exchange efficiency and/or workability, and the need for trench insulation were investigated by comparing EWT (cooling mode) of each system. CFD simulations for the PVC and PE pipe with the same inner diameter show similar EWT. This is because the PVC pipe has a small thickness but a low thermal conductivity as compared to the PE pipe, and thus these two properties tend to offset each other. However, a hypothetically insulated pipe led to a meaningful drop of EWT. This means pipe insulation is of importance in performance of ground heat exchangers. From analyzing climate data and system operation, it is not advantageous to insulate trench pipes due to construction difficulties and ground temperature characteristics that are seasonally varied.

Dissolution behavior of SrO into molten LiCl for heat reduction in used nuclear fuel

  • Kang, Dokyu;Amphlett, James T.M.;Choi, Eun-Young;Bae, Sang-Eun;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1534-1539
    • /
    • 2021
  • This study reports on the dissolution behavior of SrO in LiCl at varying SrO concentrations from low concentrations to excess. The amount of SrO dissolved in the molten salt and the species present upon cooling were determined. The thermal behavior of LiCl containing various concentrations of SrO was investigated. The experimental results were compared with results from the simulated results using the HSC Chemistry software package. Although the reaction of SrO with LiCl in the standard state at 650 ℃ has a slightly positive Gibbs free energy, SrO was found to be highly soluble in LiCl. Experimentally determined SrO concentrations were found to be considerably higher than those present in used nuclear fuel (<2 g/kg). As Sr-90 is one of the most important heat-generating nuclides in used nuclear fuel, this finding will be impactful in the development of fast, simple, and proliferation-resistant heat reduction processes for used nuclear fuel without the need for separating nuclear materials. Heat reduction is important as it decreases both the volume necessary for final disposal and the worker handling risk.

Thermal-hydraulic behaviors of a wet scrubber filtered containment venting system in 1000 MWe PWR with two venting strategies for long-term operation

  • Dong, Shichang;Zhou, Xiafeng;Yang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1396-1408
    • /
    • 2020
  • Filtered containment venting system (FCVS) is one of the severe accident mitigation systems designed to release containment pressurization to maintain its integrity. The thermal-hydraulic behaviors in FCVSs are important since they affect the operation characteristics of the FCVS. In this study, a representative FCVS was modeled by RELAP5/Mod3.3 code, and the Station BlackOut (SBO) was chosen as an accident scenario. The thermal-hydraulic behaviors of an FCVS during long-term operation with two venting strategies (open-and-close strategy, open-and-non-close strategy) and the sensitivity analysis of important parameters were investigated. The results show that the FCVS can operate up to 250 h with a periodic open-and-close strategy during an SBO. Under the combined effects of steam condensation and water evaporation, the solution inventory in the FCVS increases during the venting phase and decreases during the intermission phase, showing a periodic pattern. Under this condition, the appropriate initial water level is 3-4 m; however, it should be adjusted according to the environment temperature. The FCVS can accommodate a decay heat power of 150-260 kW and may need to feed water for a higher decay heat power or drain water for a lower decay heat power during the late phase. The FCVS can function within an opening pressure range from 450 kPa to 500 kPa and a closing pressure range between 250 kPa and 350 kPa. When the open-and-non-close strategy is adopted, the solution inventory increases quickly in the early venting phase due to steam condensation and then decreases gradually due to the evaporation of water; drying-up may occur in the late venting phase. Decreasing the venting pipe diameter and increasing the initial water level can mitigate the evaporation of the scrubbing solution. These results are expected to provide useful references for the design and engineering application of FCVSs.

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP (PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가)

  • Kang, Yujin;Lee, Junhee;Lee, Hwayoung;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.

Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments

  • Riyana, Eka Sapta;Suda, Shoya;Ishibashi, Kenji;Matsuura, Hideaki;Katakura, Jun-ichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% $^{235}U$ contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. $^{241}Pu$) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.