• Title/Summary/Keyword: Thermal Energy Margin

Search Result 48, Processing Time 0.024 seconds

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

Program development and preliminary CHF characteristics analysis for natural circulation loop under moving condition

  • Gui, Minyang;Tian, Wenxi;Wu, Di;Chen, Ronghua;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.446-454
    • /
    • 2021
  • Critical heat flux (CHF) has traditionally been evaluated using look-up tables or empirical correlations for nuclear power plants. However, under complex moving condition, it is necessary to reconsider the CHF characteristics since the conventional CHF prediction methods would no longer be applicable. In this paper, the additional forces caused by motions have been added to the annular film dryout (AFD) mechanistic model to investigate the effect of moving condition on CHF. Moreover, a theoretical model of the natural circulation loop with additional forces is established to reflect the natural circulation characteristics of the loop system. By coupling the system loop with the AFD mechanistic model, a CHF prediction program called NACOM for natural circulation loop under moving condition is developed. The effects of three operating conditions, namely stationary, inclination and rolling, on the CHF of the loop are then analyzed. It can be clearly seen that the moving condition has an adverse effect on the CHF in the natural circulation system. For the calculation parameters in this paper, the CHF can be reduced by 25% compared with the static value, which indicates that it is important to consider the effects of moving condition to retain adequate safety margin in subsequent thermal-hydraulic designs.

POWER UPRATES IN NUCLEAR POWER PLANTS: INTERNATIONAL EXPERIENCES AND APPROACHES FOR IMPLEMENTATION

  • Kang, Ki-Sig
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.255-268
    • /
    • 2008
  • The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants.

Application of Cubic Spline Synthesis in On-Line Core Axial Power Distribution Monitoring (실시간 노심출력분포 측정을 위한 3차 SPLINE합성법의 응용)

  • In, Wang-Kee;Yoo, Hyung-Keun;Auh, Geun-Sun;Lee, Chong-Chul;Kim, Si-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.316-320
    • /
    • 1991
  • The Core Operating Limit Supervisory System (COLSS) is digital computer based on-line monitoring system that is designed to assist the operator in monitoring of the Limiting Conditions for Operation. A current COLSS calculates axial power distribution based on in-core detector signals using 5th order Fourier series method. It was found that the 5th elder Fourier series method was not accurate for certain axial power shapes, especially saddle power shapes, resulting in thermal margin decrease. A cubic spline synthesis was applied to the COLSS in order to improve the axial power distribution monitoring for the various axial power shapes. The results showed that the cubic spline synthesis simulated more accurately the axial power shapes, up to 5% in RMS errors, compared to those of the Fourier series.

  • PDF

Preliminary Analysis of the CANDU Moderator Thermal-Hydraulics using the CUPID Code (2상 유동 해석코드 CUPID를 이용한 CANDU 원자로 감속재 열수력 예비해석)

  • Park, Sang Gi;Lee, Jae Ryong;Yoon, Han Young;Kim, Hyoung Tae;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.419-426
    • /
    • 2012
  • A transient, three-dimensional, two-phase flow analysis code, CUPID, has been developed in KAERI. In this work, we performed a preliminary analysis using the CUPID code to investigate the thermal-hydraulic behavior of the moderator in the Calandria vessel of a CANDU reactor. At first, we validated the CUPID code using the three experiments that were performed at Stern Laboratories Inc. To avoid the complexity to generate computational mesh around the Calandria tube bundles, a porous media approach was applied for the region. The pressure drop in the porous media zone was modeled by an empirical correlation. The results of the calculations showed that the CUPID code can predict the mixed flow pattern of forced and natural convection inside the Calandria vessel very well. Thereafter, the analysis was extended to a two-phase flow condition. Also, the local maximum temperature in the Calandria vessel was plotted as a function of the injection flow rate, which may be utilized to predict the local subcooling margin.

Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid

  • Hoda S. Ismail;Brian R. Morrow;Ashraf I. Ali;Rabab El. Mehesen;Franklin Garcia-Godoy;Salah H. Mahmoud
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.36.1-36.17
    • /
    • 2022
  • Objectives: This study aimed to evaluate the effect of aging on the marginal quality of glass hybrid (GH) material used to elevate dentin gingival margins, and to analyze the consistency of the results obtained by 3 in vitro methods. Materials and Methods: Ten teeth received compound class II cavities with subgingival margins. The dentin gingival margins were elevated with GH, followed by resin composite. The GH/gingival dentin interfaces were examined through digital microscopy, scanning electron microscopy (SEM) using resin replicas, and according to the World Dental Federation (FDI) criteria. After initial evaluations, all teeth were subjected to 10,000 thermal cycles, followed by repeating the same marginal evaluations and energy dispersive spectroscopy (EDS) analysis for the interfacial zone of 2 specimens. Marginal quality was expressed as the percentage of continuous margin at ×200 for microscopic techniques and as the frequency of each score for FDI ranking. Data were analyzed using the paired sample t-test, Wilcoxon signed-rank test, and Pearson and Spearmen correlation coefficients. Results: None of the testing techniques proved the significance of the aging factor. Moderate and strong significant correlations were found between the testing techniques. The EDS results suggested the presence of an ion-exchange layer along the GH/gingival dentin interface of aged specimens. Conclusions: The marginal quality of the GH/dentin gingival interface defied aging by thermocycling. The replica SEM and FDI ranking results had stronger correlations with each other than either showed with the digital microscopy results.

An Application of Realistic Evaluation Methodology for Large Break LOCA of Westinghouse 3 Loop Plant

  • Choi, Han-Rim;Hwang, Tae-Suk;Chung, Bub-Dong;Jun, Hwang-Yong;Lee, Chang-Sub
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.513-518
    • /
    • 1996
  • This report presents a demonstration of application of realistic evaluation methodology to a posturated cold leg large break LOCA in a Westinghouse three-loop pressurized water reactor with 17$\times$17 fuel. The new method of this analysis can be divided into three distinct step: 1) Best Estimate Code Validation and Uncertainty Quantification 2) Realistic LOCA Calculation 3) Limiting Value LOCA Calculation and Uncertainty Combination RELAP5/MOD3/K [1], which was improved from RELAP5/MOD3.1, and CONTEMPT4/MOD5 code were used as a best estimate thermal-hydraulic model for realistic LOCA calculation. The code uncertainties which will be determined in step 1) were quantified already in previous study [2], and thus the step 2) and 3) for plant application were presented in this paper. The application uncertainty parameters are divided into two categories, i.e. plant system parameters and fuel statistical parameters. Single parameter sensitivity calculations were performed to select system parameters which would be set at their limiting value in Limiting Value Approach (LVA) calculation. Single run of LVA calculation generated 27 PCT data according to the various combinations of fuel parameters and these data provided input to response surface generation. The probability distribution function was generated from Monte Carlo sampling of a response surface and the upper 95$^{th}$ percentile PCT was determined. Break spectrum analysis was also made to determine the critical break size. The results show that sufficient LOCA margin can be obtained for the demonstration NPP.

  • PDF

Infrared Thermal Imaging for Quantification of HIFU-induced Tissue Coagulation (적외선 이미징 기반 HIFU 응용 조직 응고 정량화 연구)

  • Pyo, Hanjae;Park, Suhyun;Kang, Hyun Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.236-240
    • /
    • 2017
  • In this paper, we investigate the thermal response of skin tissue to high-intensity focused ultrasound (HIFU) by means of infrared (IR) thermal imaging. For skin tightening, a 7-MHz ultrasound transducer is used to induce irreversible tissue coagulation in porcine skin. An IR camera is employed to monitor spatiotemporal changes of the temperature in the tissue. The maximum temperature in the tissue increased linearly with applied energy, up to $90^{\circ}C$. The extent of irreversible tissue coagulation (up to 3.2 mm in width) corresponds well to the spatial distribution of the temperature during HIFU sonication. Histological analysis confirms that the temperature beyond the coagulation threshold (${\sim}65^{\circ}C$) delineates the margin of collagen denaturation in the tissue. IR thermal imaging can be a feasible method for quantifying the degree of thermal coagulation in HIFU-induced skin treatment.

Analysis on Pool Temperature Variation along Pool Water Management System Operation in Research Reactor (연구용원자로에서 수조수관리계통 운전에 따른 수조수 온도 해석)

  • Choi, Jungwoon;Lee, Sunil;Park, Ki-Jung;Seo, KyoungWoo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • The domestic unique research reactor, HANARO (Hi-flux Advanced Neutron Application ReactOr), has been constructed with the open-pool, the core is submerged in, for the multi-purpose neutron application. The reactor has a primary cooling system to remove the fission heat from the core and its connected fluidic systems. Since the works are required at the reactor pool top as a characteristic of the research reactor, the radiation shall be minimized with the operation of the hot water layer system to avoid unnecessary radiation exposure on the workers during work at the pool top. Moreover, the pool water management system is connected to the reactor pool to maintain the pool temperature below $50^{\circ}C$ to minimize the uprising radioactive gas or impurity from the colder pool bottom. For the efficient flow rate of the PWMS, the thermal capacity of heat exchanger is selected with 260 kW in the normal operation condition. In this paper, the modeling is formulated to figure out whether or not each pool temperature maintains below the temperature limit and the calculation results show that the designed PWMS heat exchanger has enough capacity with the design margin regardless of the reactor operation mode.

A Study on the Knocking Characteristics with Various Excess Air Ratio in a HCNG Engine (HCNG 엔진의 공기과잉율 변화에 따른 노킹 특성에 관한 연구)

  • Lim, Gihun;Park, Cheolwoong;Lee, Sungwon;Choi, Young;Kim, Changgi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • As emission regulation for vehicle has been reinforced, many researches carried out for HCNG(hydrogen-natural gas blends) fuel to the conventional compressed natural gas (CNG) engine. However, abnormal combustion such as backfire, pre-ignition or knocking can be caused due to high combustion speed of hydrogen and it can result in over heating of engine or reduction of thermal efficiency and power output. In the present study, improvement of combustion performance was observed with HCNG fuel since it can extend a flammability limit. Knocking characteristics for CNG and HCNG fuel were investigated. Feasibility of HCNG fuel was evaluated by checking the knock margin according to excess air ratio. The operation of engine with HCNG was stable at minimum advance for best torque(MBT) spark timing and knock phenomena were not detected. However, it is necessary to prepare higher knock tendency since possibility of knock is higher with HCNG fuel.