• Title/Summary/Keyword: Thermal Energy Management

Search Result 252, Processing Time 0.032 seconds

Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications (전기자동차용 고신뢰성 파워모듈 패키징 기술)

  • Yoon, Jeong-Won;Bang, Jung-Hwan;Ko, Yong-Ho;Yoo, Se-Hoon;Kim, Jun-Ki;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2014
  • The paper gives an overview of the concepts, basic requirements, and trends regarding packaging technologies of power modules in hybrid (HEV) and electric vehicles (EV). Power electronics is gaining more and more importance in the automotive sector due to the slow but steady progress of introducing partially or even fully electric powered vehicles. The demands for power electronic devices and systems are manifold, and concerns besides aspects such as energy efficiency, cooling and costs especially robustness and lifetime issues. Higher operation temperatures and the current density increase of new IGBT (Insulated Gate Bipolar Transistor) generations make it more and more complicated to meet the quality requirements for power electronic modules. Especially the increasing heat dissipation inside the silicon (Si) leads to maximum operation temperatures of nearly $200^{\circ}C$. As a result new packaging technologies are needed to face the demands of power modules in the future. Wide-band gap (WBG) semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) have the potential to considerably enhance the energy efficiency and to reduce the weight of power electronic systems in EVs due to their improved electrical and thermal properties in comparison to Si based solutions. In this paper, we will introduce various package materials, advanced packaging technologies, heat dissipation and thermal management of advanced power modules with extended reliability for EV applications. In addition, SiC and GaN based WBG power modules will be introduced.

Comparison of WABA and Gd Burnable Absorbers Nuclear Characteristics and Optimal Allocation of Gd Rods in Fuel Assembly (WABA및 가도리니움 독봉 집합체에 대한 핵특성 비교 및 집합체내 가도리니아봉 위치 최적 선정)

  • Jung, Byung-Ryul;Yi, Yu-Han;Lee, Un-Chul;Park, Chan-Oh
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.352-362
    • /
    • 1991
  • Recent popular trends in pressurized water reactor(PWR) fuel management are to extend the cycle length and to employ the low-leakage core designs for the optimal utilization of the uranium resources. In control strategy incorporated with the fuel management, turnable absorbers are required to control the power peaking and to ensure a negative moderator temperature coefficient during reactor operation. In this study, the nuclear characteristics and the optimal allocation of gadolinium-poisoned rods within the fuel assembly are considered using KWU SAV 79 A Code Package. First, analyses are carried out to compare the nuclear characteristics of the fuel assemblies contain-ing WABA(Wet Annular Burnable Absorber) and Gadolinium burnable absorbers respectively. The analyses show that the gadolinium-bearing fuel assembly has peculiar depletion characteristics ensuing from the very large thermal neutron absorption cross section. Peculiar characteristics of gadolinium provide basis for the optimal allocation of Gd rods in fuel assembly. Second, the methodology of an optimal allocation of gadolinium-poisoned rods within the fuel assembly is developed and applied to some nuclear designs.

  • PDF

Development of a Sustainable Waste Paint Treatment Process for Waste Resource Recovery Improvement (폐기물 자원회수 향상을 위한 친환경 폐페인트 처리프로세스 개발)

  • Moon, Jongwook;Hwang, Suckho;Kim, Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.73-82
    • /
    • 2022
  • Waste paint, one of the specified wastes in Korea, is currently treated entirely by incineration treatment method, and is hardly recycled compared to other wastes. Incineration treatment method also causes environmental problems such as air pollution. Thus, this study breaks away from the existing incineration treatment method of waste paint and switch to a method of pretreatment operation through evaporation, condensation, and thermal decomposition by temperature control. and then proposes a sustainable waste paint treatment process that can be recycled as an alternative energy heat source. If a new method of disposing of waste paint and technology for recycling are developed and disseminated, it is expected that the effect will be large from an economic and environmental point of view.

Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House (데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측)

  • Choi, Lak-yeong;Chae, Yeonghyun;Lee, Se-yeon;Park, Jinseon;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

The Changes of Psychological and Physiological Emotional Responses According to Change of the Index of Predicted Mean Vote (PMV) due to Air Conditioning Types (공조방식에 의한 예상 온열감 반응(PMV) 변화에 따른 심리/생리적 감성반응의 변화)

  • Kim, Bo-Seong;Min, Yoon-Ki;Min, Byung-Chan;Kim, Jin-Ho
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.645-652
    • /
    • 2011
  • This study examined changes of both psychological and physiological emotional responses according to change of the PMV (predicted mean vote) in the heating and the cooling air conditions. For this purpose, the changes of PMV were induced by the heating and cooling operations of the HVAC (heating, ventilation, and air conditioning) systems. In addition, positive/negative and arousal/relaxation were measured as the participant's psychological emotional responses, and HR (heart rate) was measured as the participant's physiological emotional responses. As a result, in same range of the PMV, both psychological and physiological emotional-responses were changed by air conditioning. It is suggested that occupant's emotional responses would depend on the operational conditions of heating and cooling in indoor thermal environments, and both psychological and physiological emotional response should be considered when occupants try to match the indoor thermal environments to their thermal expectations.

  • PDF

A Case Study on the Ventilation and Heat Environment in a Underground Limestone Mine with Rampway (Rampway 설치 석회석 광산내 환기 현황 및 열환경 분석 사례연구)

  • Kim, Doo-Young;Lee, Seung-Ho;Jeong, Kyu-Hong;Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2012
  • As more diesel engines have been employed in underground limestone mines with large cross section, underground space environment is worsened by diesel exhausts and heat flow. This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow, diesel exhaust gas concentrations and the effects of mechanization and deepening working face on temperature and humidity. Due to the insufficient capacity of the main exhaust fan and poor airway management, stagnant airflows were observed at various locations, while the flow direction was reversed instantly with passing diesel equipment and the flow reversal was also made by the seasonal variation of the outside surface weather. During the loading operation, CO concentration measurements were found to be frequently higher than the threshold limit of 50 ppm, and most of the $NO_2$ measurements during drilling and loading operations shows even more serious levels surpassing the permissible limit of 3 ppm. The actual ventilation quantity was considerably less than the required quantity estimated by the mine health and safety law, and this shortage problem was less serious in colder winter showing more effectiveness of the natural ventilation.

Effect of water temperature on protein requirement of Heteropneustes fossilis (Bloch) fry as determined by nutrient deposition, hemato-biochemical parameters and stress resistance response

  • Fatma, Shabihul;Ahmed, Imtiaz
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.1
    • /
    • pp.1.1-1.14
    • /
    • 2020
  • Background: Dietary protein requirements are dependent on a variety of factors and water temperature is one of the most important abiotic factors affecting protein requirement of fish. This study was, therefore, conducted to investigate effects of water temperature on dietary protein requirement of fry Heteropneustes fossilis which has high demand in most of the Asian markets. Methods: Quadruplicate groups of 30 fish per treatment (2.97 ± 0.65 cm; 5.11 ± 0.34 g) were fed seven isoenergetic diets (17.9 kJ g-1 gross energy; 14.99 kJ g-1 digestible energy) containing dietary protein levels ranging from 28 to 52% at two water temperatures (18 and 26 ℃). Experimental diets were fed to apparent satiation as semi-moist cakes thrice daily at 17:00, 12:00, and 17:30 h for 12 weeks. For precise information, various growth parameters, protein deposition, hematological parameters, metabolic enzymes, and stress response were analyzed, and effects of water temperature on dietary protein requirement was recommended on the basis of response from above parameters. Results: Groups held at 26 ℃ attained best growth, feed conversion, and protein deposition at 44% dietary protein indicating that temperature affected dietary protein requirement for optimum growth of H. fossilis fry and protein requirement seems to be satisfied with 44% dietary protein. Interestingly, interactive effects of both dietary protein levels and temperature were not found (P > 0.05). Fish reared at 18 ℃ had comparatively higher values for aspartate and alanine transferases than those reared at 26 ℃ water temperature which exhibited normal physiological value for these enzymes indicating that body metabolism was normal at this temperature. Hematological parameters also followed same pattern. Furthermore, fish reared at 26 ℃ water temperature exhibited more resistant to thermal stress (P < 0.05). The 95% maximum plateau of protein deposition data using second-degree polynomial regression analyses exhibited dietary protein requirement of fry H. fossilis between 40.8 and 41.8% of diet at 26 ℃ water temperature. The recommended range of dietary protein level and protein/digestible energy ratio for fry H. fossilis is 40.8-41.8% and 27.21-27.88 mg protein kJ-1 digestible energy, respectively. Conclusions: Information developed is of high significance for optimizing growth potential by making better utilization of nutrient at 26 ℃ and, to develop effective management strategies for mass culture of this highly preferred fish species.

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.