Browse > Article
http://dx.doi.org/10.1186/s41240-020-0147-y

Effect of water temperature on protein requirement of Heteropneustes fossilis (Bloch) fry as determined by nutrient deposition, hemato-biochemical parameters and stress resistance response  

Fatma, Shabihul (Department of Nursing, Farasan University College, Farasan, Jazan University)
Ahmed, Imtiaz (Department of Zoology, University of Kahsmir)
Publication Information
Fisheries and Aquatic Sciences / v.23, no.1, 2020 , pp. 1.1-1.14 More about this Journal
Abstract
Background: Dietary protein requirements are dependent on a variety of factors and water temperature is one of the most important abiotic factors affecting protein requirement of fish. This study was, therefore, conducted to investigate effects of water temperature on dietary protein requirement of fry Heteropneustes fossilis which has high demand in most of the Asian markets. Methods: Quadruplicate groups of 30 fish per treatment (2.97 ± 0.65 cm; 5.11 ± 0.34 g) were fed seven isoenergetic diets (17.9 kJ g-1 gross energy; 14.99 kJ g-1 digestible energy) containing dietary protein levels ranging from 28 to 52% at two water temperatures (18 and 26 ℃). Experimental diets were fed to apparent satiation as semi-moist cakes thrice daily at 17:00, 12:00, and 17:30 h for 12 weeks. For precise information, various growth parameters, protein deposition, hematological parameters, metabolic enzymes, and stress response were analyzed, and effects of water temperature on dietary protein requirement was recommended on the basis of response from above parameters. Results: Groups held at 26 ℃ attained best growth, feed conversion, and protein deposition at 44% dietary protein indicating that temperature affected dietary protein requirement for optimum growth of H. fossilis fry and protein requirement seems to be satisfied with 44% dietary protein. Interestingly, interactive effects of both dietary protein levels and temperature were not found (P > 0.05). Fish reared at 18 ℃ had comparatively higher values for aspartate and alanine transferases than those reared at 26 ℃ water temperature which exhibited normal physiological value for these enzymes indicating that body metabolism was normal at this temperature. Hematological parameters also followed same pattern. Furthermore, fish reared at 26 ℃ water temperature exhibited more resistant to thermal stress (P < 0.05). The 95% maximum plateau of protein deposition data using second-degree polynomial regression analyses exhibited dietary protein requirement of fry H. fossilis between 40.8 and 41.8% of diet at 26 ℃ water temperature. The recommended range of dietary protein level and protein/digestible energy ratio for fry H. fossilis is 40.8-41.8% and 27.21-27.88 mg protein kJ-1 digestible energy, respectively. Conclusions: Information developed is of high significance for optimizing growth potential by making better utilization of nutrient at 26 ℃ and, to develop effective management strategies for mass culture of this highly preferred fish species.
Keywords
Temperature; Heteropneustes fossilis; Growth; Metabolic enzymes; Hematological parameters;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Singh RK, Chavan SL, Desai AS, Khandagale PA. Effect of water temperature on dietary protein requirement, growth and body composition of Asian catfish, Clarias batrachus fry. J Therm Biol. 2009;34:8-13 https://doi.org/10.1016/j.jtherbio.2008.08.005.   DOI
2 Snedecor GW, Cochran WG. Statistical Methods. 6th ed. Ames: Iowa State Univ. Press; 1982. p. 593.
3 Steffens W. Protein utilization of rainbow trout (Salmo gairdneri) and carp (Cyprinus carpio): a brief review. Aquaculture. 1981;23:337-45 https://doi.org/10.1016/0044-8486(81)90026-0.   DOI
4 Steinhagen D, Kruse P, Korting W. Some haematological observations on Carp Cyprinus carpio L. experimentally infected with Trypanoplasma borelli Laveran and Mesnil. 1901 (Protozoa: Kitenoplastida). J Fish Dis. 1990;14:157-62. https://doi.org/10.1111/j.1365-2761.1990.tb00768.x.   DOI
5 Sun Z, Xia S, Feng S, Zhang Z, Rahman MM, Rajkumar M, Jiang S. Effects of water temperature on survival, growth, digestive enzyme activities, and body composition of the leopard coral grouper Plectropomus leopardus. Fish Sci. 2015;81:107-12. https://doi.org/10.1007/s12562-014-0832-9.   DOI
6 Tacon AGJ, Cowey CB. Protein and amino acid requirements. In: Tytler P, Calow P, editors. Fish Energetics: new perspectives. Baltimore: The John Hopkins University Press; 1985. p. 155-83.
7 Thakur NK. Possibilities and problems of catfish culture in India. J Inland Fish Soc. India. 1991;23:80-90.
8 Tharakan B, Joy KP. Effects of mammalian gonadotropin-releasing hormone analogue, Pimozide, and the combination on plasma gonadotropin levels in different seasons and induction of ovulation in female catfish. J Fish Biol. 1996;48:623-32. https://doi.org/10.1111/j.1095-8649.1996.tb01457.x.   DOI
9 APHA. Standard methods for the examination of water and wastewater. 18th, Washington DC; 1992. p. 1268.
10 Castille FJ Jr, Lawrence AL. The effect of salinity on the osmotic, sodium and chloride concentrations in the hemolymph of euryhaline shrimp of the genus Penaeus. Comp Biochem Physiol. 1981;68A:75-80 https://doi.org/10.1016/0300-9629 (81) 90320-0.   DOI
11 Chatterjee N, Pal AK, Manush SM, Das T, Mukherjee SG. Thermal tolerance and oxygen consumption of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures. J Therm Biol. 2004;29:265-70 https://doi.org/10.1016/j.jtherbio.2004.05.001.   DOI
12 Christopher JSG, Murugesan AG, Sukumaran N. Induction of meiotic gynogenesis in the stinging catfish Heteropneustes fossilis (Bloch) and evidence for female homogamety. Aquac Res. 2010;42:129-38. https://doi.org/10.1111/j.1365-2109.2010.02593.x.   DOI
13 Cowey CB. Protein and amino acid requirements of finfish. In: J. E. Halver and K. Tiews (Ed), Finfish Nutrition and fishfeed technology. 1979;I:3-16. Heenemann, Berlin.
14 Cui Y, Wootton RJ. Effects of ration, temperature and body size on the body composition and energy content of the minnow, Phoxinus phoxinus (L.). J Fish Biol. 1988;32:749-64. https://doi.org/10.1111/j.1095-8649.1988.tb05414.x.   DOI
15 Daniels WH, Robinson EH. Protein and energy requirements of juvenile red drum (Sciaenops ocellatus). Aquaculture. 1986;73:243-52 https://doi.org/10.1016/0044-8486(86)90354-6.   DOI
16 Davis AT, Stickney RR. Growth responses of Tilapia aurea to dietary protein quality and quantity. Tran American Fish Soc. 1978;107:479-83.   DOI
17 Usmani N, Jafri AK. Effect of fish size and temperature on the utilization of different protein source in two catfish species. Aquac Res. 2002;33:959-67. https://doi.org/10.1046/j.1365-2109.2002.00747.x.   DOI
18 Tibbetts SM, Lall SP, Milley JE. Effects of dietary protein and lipid levels and DP/DE ratio on growth, feed utilization and hepatosomatic index of juvenile haddock, Melanogrammus aeglefinus L. Aquacult Nutr. 2005;11:67-75. https://doi.org/10.1111/j.1365-2095.2004.00326.x.   DOI
19 Tidwell JH, Coyle SD, Bright LA, Van Arnum A, Yasharian D. Effects of water temperature on growth, survival, and biochemical composition of largemouth bass Micropterus salmonides. J World Aquacult Soc. 2003;34:175-83. https://doi.org/10.1111/j.1749-7345.2003.tb00054.x.   DOI
20 Turker A. Effect of photoperiod on growth of trout (Oncorhynchus mykiss) in cold ambient sea water. Israel J Aquac (Bamidgeh). 2009;61:57-62.
21 Usmani N, Jafri AK, Khan MA. Nutrient digestibility studies in Heteropneustes fossilis (Bloch), Clarias batrachus (Linnaeus) and C. gariepinus (Burchell). Aquac Res. 2003;34:1247-53. https://doi.org/10.1046/j.1365-2109.2003.00930.x.   DOI
22 Van Ham EH, Berntssen MHG, Imsland AK, Parpoura AC, Bonga SEW, Stefansson SO. The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot (Scophthalmus maximus). Aquaculture. 2003;217:547-58 https://doi.org/10.1016/S0044-8486(02)00411-8.   DOI
23 Vijayakumar C, Sridhar S, Haniffa MA. Low cost breeding and hatching techniques for the catfish Heteropneustes fossilis for small-scale farmers. NAGA. 1998;21:15-7.
24 Duncan DB. Multiple range and multiple 'F' tests. Biometrics. 1955;11:1-42.   DOI
25 Dehadrai PV, Yusuf KM, Das RK. Package and practices for increasing production of air breathing fishes. In: Aquaculture Extension Manual, New Series, Information and Extension Division of CIFRI: Indian Council of Agriculture Research; 1985. p. 1-14.
26 Dias J, Huelvan C, Dinis MT, Metaliller R. Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus labrax) juveniles. Aquat Liv Resur. 1998;11:219-26. https://doi.org/10.1016/S0990-7440(98)89004-9.   DOI
27 Duan Q, Mai K, Zhong H, Si L, Wang X. Studies on the nutrition of the large yellow croaker, Pseudosciaena crocea R: 1. Growth response to graded levels of dietary protein and lipid. Aquac Res. 2001;32:46-52. https://doi.org/10.1046/j.1355-557x.2001.00048.x.   DOI
28 Dutta H. Pisces: Growth in Fishes. Gerontol. 1994;40:97-112 https://doi.org/10.1159/000213581.   DOI
29 El-Dakar AY, Shalaby SM, Saoud IP. Dietary protein requirement of juvenile marbled spinefoot rabbitfish Siganus rivulatus. Aquac Res. 2011;42:1050-5. https://doi.org/10.1111/j.1365-2109.2010.02694.x.   DOI
30 El-Sayed AFM, El-Ghobashy A, Al-Amoudi M. Effects of pond depth and water temperature on the growth, mortality and body composition of Nile tilapia, Oreochromis niloticus (L.). Aquac Res. 1996;27:681-7. https://doi.org/10.1046/j.1365-2109.1996.00776.x.   DOI
31 Farhat KMA. Growth, feed conversion, and nutrient retention efficiencies of African catfish, Clarias gariepinus (Burchell) fingerling fed diets with varying levels of protein. J Appl Aquacult. 2011;23:304-16 https://doi.org/10.1080/10454438.2011.626370.   DOI
32 Farhat KMA. Dietary L-tryptophan requirement of fingerling stinging catfish, Heteropneustes fossilis (Bloch). Aquac Res. 2014a;45:1224-35. https://doi.org/10.1111/are.12066.   DOI
33 Khan MA, Abidi SF. Optimum ration level for better growth, conversion efficiencies and body composition of fingerling Heteropneustes fossilis (Bloch). Aquacult Intl. 2010;18:175-88. https://doi.org/10.1007/s10499-008-9234-2.   DOI
34 Khan MA, Abidi SF. Effect of dietary L-lysine levels on growth, feed conversion, lysine retention efficiency and haematological indices of Heteropneustes fossilis (Bloch) fry. Aquacult Nutr. 2011a;17:e657-67. https://doi.org/10.1111/j.1365-2095.2010.00815.x.   DOI
35 Farhat, Khan MA. Effects of dietary arginine levels on growth, feed conversion, protein productive value and carcass composition of stinging catfish fingerling Heteropneustes fossilis (Bloch). Aquacult Intl. 2012; 20, 935-950 DOl https://doi.org/10.1007/sl0499-0I2-9519-3.   DOI
36 Farhat KMA. Effects of varying levels of dietary L-histidine on growth, feed conversion, protein gain, histidine retention, hematological and body composition in fingerling stinging catfish Heteropneustes fossilis (Bloch). Aquaculture. 2013a;404-405:130-8. https://doi.org/10.1015/j.aquaculture.2013.04.020.   DOI
37 Farhat KMA. Dietary L-lysine requirement of fingerling stinging catfish, Heteropneustes fossilis (Bloch) for optimizing growth, feed conversion, protein and lysine deposition. Aquac Res. 2013b;44:523-33. https://doi.org/10.1111/j.1365-2109.2011.03054.x.   DOI
38 Farhat KMA. Response of fingerling stinging catfish, Heteropneustes fossilis (Bloch) to varying levels of dietary L-leucine in relation to growth, feed conversion, protein utilization, leucine retention and blood parameters. Aquacult Nutr. 2014b;20:291-302. https://doi.org/10.1111/anu.12077.   DOI
39 Farhat KMA. Total sulfur amino acid requirement and cystine replacement value for fingerling stinging catfish, Heteropneustes fossilis (Bloch). Aquaculture. 2014c;426-427:270-81 https://doi.org/10.1016/j.aquaculture.2014.02.023.   DOI
40 Farhat KMA. Growth, feed conversion and body composition of fingerling stinging catfish Heteropneustes fossilis (Bloch) fed varying levels of dietary L-threonine. Aquac Res. 2017;48:2355-68. https://doi.org/10.1111/are.13071.   DOI
41 Khan MS, Ang KJ, Ambak MA, Saad CR. Optimum dietary protein requirement of a Malaysian freshwater catfish, Mystus nemurus. Aquaculture. 1993;112:227-35 https://doi.org/10.1016/0044-8486(93)90448-8.   DOI
42 Khan MA, Abidi SF. Dietary arginine requirement of Heteropneustes (Bloch) fry based on growth, nutrient retention and hematological parameters. Aquacult Nutr. 2011b;17:418-28. https://doi.org/10.1111/j.1365-2095.2010.00819.x.   DOI
43 Khan MA, Abidi SF. Effect of varying protein-energy ratios on growth, nutrient retention, somatic indices and digestive enzyme activities of Singhi Heteropneustes fossilis fry (Bloch). J World Aquacult Soc. 2012;43:490-501. https://doi.org/10.1111/j.1749-7345.2012.00587.x.   DOI
44 Khan MA, Abidi SF. Dietary Histidine requirement of Singhi Heteropneustes fossilis (Bloch). Aquacult Res. 2014;45:1341-54. https://doi.org/10.1111/are.12081.   DOI
45 Kim JD, Lall SP, Milley JE. Dietary protein requirements of juvenile haddock (Melanogrammus aeglefinus L.). Aquacult Res. 2001;32:1-7. https://doi.org/10.1046/j.1355-557x.2001.00001.x.
46 Kim SS, Lee KJ. Dietary protein requirement of juvenile tiger puffer (Takifugu rubripes). Aquaculture. 2009;287:219-22 https://doi.org/10.1016/j.aquaculture.2008.10.021.   DOI
47 Koeypudsa W, Jongjareanjai M. Effect of water temperature on hematology and virulence of Aeromonas hydrophila in hybrid catfish (Clarias gariepinus Burchell X C. macrocephalus Gunther). Thai J Med. 2010;40:179-86.
48 Koskela JJ, Pirhonen J, Jobling M. Feed intake, growth rate and body composition of juvenile Baltic salmon exposed to different constant temperatures. Aquacult Intl. 1997;5:351-60. https://doi.org/10.1023/A:1018316224253.   DOI
49 Kumar D, Marimuthu K, Haniffa MA, Sethuramalingam TA. Optimum dietary protein requirement of striped murrel Channa striatus fry. Malaysian J Sci. 2010;29:52-61.   DOI
50 Wang Y, Guo J, Li K, Bureau DP. Effects of dietary protein and energy levels on growth, feed utilization and body composition of cuneate drum (Nibea miichthioides). Aquaculture. 2006;252:421-8 https://doi.org/10.1016/j.aquaculture.2005.06.051.   DOI
51 Wedemeyer GR, Meyer FP, Smith L. Environmental Stress and Fish Diseases. Delhi: Narendra Publishing House; 1999. p. 107.
52 Wong, SY. Colorimetric determination of iron and hemoglobin in blood. II J. Biol. Chem. 1928;77:409-412.   DOI
53 Xia J, Li X. Effect of temperature on blood parameters of the salamander Batrachupems tibetanus (Schmidt, 1925) (Amphibia: Hynobiidae). Russian J Ecol. 2010;41(1):102-6. https://doi.org/10.1134/S1067413610010194.   DOI
54 Yokoyama HO. Studies on the origin, development and seasonal variations in the blood cells of the perch, Perca J. Eavescens. Ph.D. Thesis. Univ. Wisconsin, Madison, Wis. 144 pp, 1974.
55 Zehra S, Khan MA. Dietary protein requirement for fingerling Channa punctatus (Bloch), based on growth, feed conversion, protein retention and biochemical composition. Aquacult. Intl. 2012;20:383-95. https://doi.org/10.1007/s10499-011-9470-8.   DOI
56 Zeitoun IH, Ullrey DE, Magee WT, Gill JL, Bergen WG. Quantifying nutrient requirements of fish. J Fisher Res Board Canada. 1976;33:167-72 https://doi.org/10.1139/f76-019.   DOI
57 Firdaus S, Jafri AK, Rahman N. Effect of iron deficient diet on the growth and haematological characteristics of the catfish, Heteropneustes fossilis Bloch. J Aqua Trop. 1994;9:179-85.
58 Firdaus S. On relative efficiency of purified diets, with variable protein levels, in young catfish Heteropneustes fossilis Bloch. Indian J Fish. 1993;40:43-6.
59 Firdaus S, Jafri AK. Growth and haematological response of young catfish Heteropneustes fossilis Bloch, to dietary phosphorous supplementation. J Aqua Trop. 1996;11:263-9.
60 Firdaus S, Jafri AK, Khan MA. Effect of dietary levels of mineral mixture on the growth, body composition and haematology of catfish, Heteropneustes fossilis Bloch. J Aqua Trop. 2002;17:273-81.
61 Forster I, Hardy RW. Energy. In: Stickney RR, editor. Encyclopedia of Aquaculture. New York: Wiley; 2000. p. 292-8.
62 Fry FEJ. Effects of environment on animal activity. University of Toronto Studied Biology Series No. 55. Publ Ont Fish Res Lab. 1947;68:1-62.
63 Gholami M. Effects of n-3 HUFA enrichment Daphnia magnaon growth, survival, stress resistance and fatty acid composition of Whitefish fry (Rutilus frisii kutum). Fish. and Aquatic Sci. 2010;5(1):49-55. https://doi.org/10.3923/jfas.2010.49.55.
64 Gullu K, Guroy G, Celik I, Tekinay AA. Optimal dietary protein levels in juvenile electric blue cichlid (Sciaenochromis fryeri). Isr J Aquacult Bamid. 2008;60:261-7. http://hdl.handle.net/10524/19267.
65 Haider G. Comparative studies of blood morphology and haemopoiesis of some teleost. Observations on cells of the red series. J Zool. 1973;179:355-83.
66 Halver JE. The vitamins. In: Halver JE, Hardy RW, editors. Fish nutrition. 3rd ed. San Diego: Academic Press; 2002. p. 61-141.
67 Lee JK, Cho SH, Park SU, Kim KD, Lee SM. Dietary protein requirement for young turbot (Scophthalmus maximus L.). Aquacult Nutr. 2003;9:283-6. https://doi.org/10.1046/j.1365-2095.2003.00255.x.   DOI
68 Kumar R. Ammonia stress on transaminases level in brain of an air-breathing teleost Channa punctatus (Bloch). Adv Biol. 1999;18:53-60.
69 Larsson S, Berglund I. The effect of temperature on the growth energetic, growth efficiency of Aractic charr (Salvelinus alpinus L.) from four Swedish populations. J Ther Biol. 2005;30:29-36 https://doi.org/10.1016/j.jtherbio.2004.06.001.   DOI
70 Lee HYM, Cho KC, Lee JE, Yang SG. Dietary protein requirement of juvenile giant croaker, Nibea japonica Temminck and Schlegel. Aquac Res. 2001;32:112-8. https://doi.org/10.1046/j.1365-2095.2003.00255.x.   DOI
71 Li Y, Sun G, Liu Y, Gao T, Yu K, Liu J. Effects of temperature on feed intake, growth and digestive enzyme activity of turbot Scophthalmus maximus L. in high stocking density of closed recirculation aquaculture system. Prog Fish Sci. 2011;32:17-24.
72 Lupatsch I, Kissil GW, Sklan D, Pfeffer E. Effects of varying dietary protein and energy supply on growth, body composition and protein utilization in gilthead seabream (Sparus aurata L.). Aquacult. Nutr. 2001;7:71-80. https://doi.org/10.1046/j.1365-2095.2001.00150.x.   DOI
73 Mishra BM, Khalid MA, Labh SN. Assessment of the effect of water temperature on length gain, feed conversion ratio (FCR) and protein profile in brain of Labeo rohita (Hamilton 1822) fed Nigella sativa incorporated diets. Intl J Fish Aquatic Studies. 2019;7(3):06-13.
74 Mohamed SJ. Dietary pyridoxine requirement of the Indian catfish Heteropneustes fossilis. Aquaculture. 2001;194:327-35 https://doi.org/10.1016/S0044-8486(00)00510-X.   DOI
75 Hilge V. Influence of temperature on the growth of the European catfish (Isilurus glanis). J Appl Ichthyol. 1985;1:27-31. https://doi.org/10.1111/j.1439-0426.1985.tb00407.x.   DOI
76 Halver JE, Hardy RW. In: Halver JE, Hardy RW, editors. Fish nutrition. 3rd ed. San Diego: Academic Press; 2002. p. 500.
77 Han KN, Lee SW, Wang SY. The effect of temperature on the energy budget of the Manila clam, Ruditapes philippinarum. Aquacult Intl. 2008;16:143-52. https://doi.org/10.1007/s10499-007-9133-y.   DOI
78 Haniffa MA, Sridhar S. Induced spawning of the spotted murrel Channa punctatus and the catfish Heteropneustes fossilis using ovaprim and human chorionic gonadotropin (HCG). Veterinarski Archive. 2002;72:51-6 Hrcak ID: 78400 URI. https://hrcak.srce.hr/78400.
79 Hochachka PW, Somero GN. Biochemical adaptation. Princeton University Press; Princeton, New Jersey: 1984; p. 525.
80 Huang JF, Xu QY, Chang YM. Effects of temperature and dietary protein on the growth performance and IGF-I mRNA expression of juvenile mirror carp (Cyprinus carpio). Aquacult Nutr. 2016;22:283-92.   DOI
81 Jalali MA, Hosseini SA, Imanpoor MR. Effect of vitamin E and highly unsaturated fatty acid enriched Artemia urmianaon growth performance, survival and stress resistance of Beluga (Huso huso) larvae. Aquacult. Res. 2008;39(12):1286-1291. https://doi.org/10.1111/j.1365-2109.2008.01992.x.   DOI
82 Jhingran VG. Culture of air-breathing fishes and non-air-breathing predatory carnivorous fishes. In: Jhingran VG, editor. Fish and Fisheries of India. 3rd ed. Delhi: Hindustan Publishing Corporation; 1991. p. 498-503.
83 Jobling M. Temperature and growth: modulation of growth rate via temperature change. In: Wood CM, McDonald DG, editors. Global Warming: Implications for Freshwater and Marine Fish. Cambridge: Cambridge University Press; 1997. p. 225-53.
84 NRC. Nutrient Requirements of Fish. Nutrient requirements of domestic animals. Washington, DC: Committee on Animal Nutrition, Board on Agriculture, National Research Council, National Academy Press; 1993. p. 114.
85 Mohamed SJ, Ibrahim A. Quantifying the dietary niacin requirement of the Indian catfish, Heteropneustes fossilis (Bloch) fingerlings. Aquac Res. 2001;32:157-62. https://doi.org/10.1046/j.1365-2109.2001.00530.x.   DOI
86 Ng WK, Soon SC, Hashim R. The dietary protein requirement of a bagrid catfish, Mystus nemurus (Cuvier and Valenciennes), determined using semi purified diets of varying protein level. Aquacult Nutr. 2001;7:45-51. https://doi.org/10.1046/j.1365-2095.2001.00160.x.   DOI
87 Niamat R, Jafri AK. Growth response of the siluroid, Heteropneustes fossilis Bloch, fed pelleted feed. Aquaculture. 1984;37:223-9 https://doi.org/10.1016/0044-8486(84)90155-8.   DOI
88 Otterle IE, Folkvord A, Moller D. Effects of temperature and density on growth, survival and cannibalism of juvenile cod (Gadus morhua). ICES Marine Sci Symp. 1994;198:632-6.
89 Oyugi D, Cucherousset J, Ntiba JM, Kisia SM, Harper DM, Britton JR. Life history traits of an equatorial carp Cyprinus carpio population in relation to thermal influences on invasive populations. Fish Res. 2011;110:92-7.   DOI
90 Ozorio ROA, Valente LMP, Correia S, Pousao-Ferreira P, Damasceno-Oliveira D, Escorcio C, Oliva-Teles A. Protein requirement for maintenance and maximum growth of two-banded sea bream (Diplodus vulgaris) juveniles. Aquacult Nutr. 2006;15:85-93. https://doi.org/10.1111/j.1365-2095.2008.00570.x.   DOI
91 Peres H, Oliva-Teles A. Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture. 1999;170:337-48 https://doi.org/10.1016/S0044-8486(98)00422-0.   DOI
92 Ahmed I. Dietary amino acid $_L$-tryptophan requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch), estimated by growth and haematobiochemical parameters. Fish Physiol Biochem. 2012;38:1195-209.   DOI
93 Abdelrahman HA, Abebe A, Boyd CE. Influence of variation in water temperature on survival, growth and yield of Pacific white shrimp Litopenaeus vannamei in inland ponds for low-salinity culture. Aquac Res. 2019;50(2):658-72.   DOI
94 Ahmed I. Dietary amino acid $_L$-threonine requirements of fingerling Indian catfish, Heteropneustes fossilis (Bloch) estimated by growth and biochemical parameters. Aquacult Intl. 2007;15:337-50.   DOI
95 Ahmed I. Response to the ration levels on growth, body composition, energy, and protein maintenance requirement of the Indian catfish (Heteropneustes fossilis-Bloch 1974). Fish Physiol Biochem. 2010;36:1133-43.   DOI
96 Ahmed I. Dietary amino acid $_L$-histidine requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch), estimated by growth and whole body protein and fat composition. J Appl Ichthyol. 2013a;29:602-9.   DOI
97 Ahmed I. Dietary arginine requirement of fingerling Indian catfish (Heteropneustes fossilis, Bloch). Aquacult Intl. 2013b;21:255-71.   DOI
98 Ahmed I. Dietary amino acid $_L$-methionine requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch-1974) estimated by growth and haemato-biochemical parameters. Aquacult Res. 2014;45:243-58.   DOI
99 Pillay TVR. Nutrition and Feeds. In: Aquaculture principles and practices. London: Fishing News Books; 1990. p. 92-155.
100 Jonassen TM, Imsland AK, Kadowaki S, Stefansson SO. Interaction of temperature and photoperiod on growth of Atlantic halibut Hippoglossus hippoglossus. L Aquac Res. 2000;31:219-27. https://doi.org/10.1046/j.1365-2109.2000.00447.x.   DOI
101 Rahman MA, Gheyasuddin H, Rasid MH, Choudhury MFZ. Proximate composition and native quality of freshwater Zeol fishes of Bangladesh. Bangladesh J Fisher. 1982;2-5:37-43.
102 Reitman S, Frankel S. A Colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clinical Pathol. 1957;28:56-63.   DOI
103 Saha KC, Guha BC. Nutritional investigation on Bengal fish. Indian J Med Res. 1939;26:921-7 ISSN: 0019-5359.
104 Sarma K, Pal AK, Ayyapan S, Das T, Manush SM, Debnath D, Baruah K. Acclimation of Anabas tetudineus (Bloch) to three test temperatures influences thermal tolerance and oxygen consumption. Fish Physiol Biochem. 2010;36:85-90. https://doi.org/10.1007/s10695-008-9293-3.   DOI
105 Shcherbina MA, Kazlauskene OP. Water temperature and digestibility of nutrient substances by carp. Hydrobiologia. 1971;9:40-4.
106 Shimeno S, Hosokawa H, Takeda M, Kajiyama H. Effects of calorie to protein ratios in formulated diet on the growth, feed conversion and body composition of young yellowtail. Bull Jpn Soc Sci Fish. 1980;46:1083-7.   DOI
107 Siddiqui TQ, Khan MA. Effects of dietary protein levels on growth, feed utilization, protein retention efficiency and body composition of young Heteropneustes fossilis (Bloch). Fish Physiol Biochem. 2009;35:479-88. https://doi.org/10.1007/s10695-008-9273-7.   DOI
108 Singh RK, Chavan SL, Desai AS, Khandagale PA. Influence of dietary protein levels and water temperature on growth, body composition and nutrient utilization of Cirrhinus mrigala (Hamilton 1822) fry. J Therm Biol. 2008;33:20-6 https://doi.org/10.1016/j.jtherbio.2007.09.003.   DOI
109 Ahmed I, Maqbool A. Effects of dietary protein levels on the growth, feed utilization and haemato-biochemical parameters of freshwater fish, Cyprinus Carpio Var Specularis. Fish Aqua J. 2017;8:1-12. https://doi.org/10.4172/2150-3508.1000187.
110 Ahmed I. Effects of dietary amino acid L-lysine on survival, growth and haematobiochemical parameters in Indian catfish, Heteropneustes fossilis (Bloch-1974) fingerling. J Appl Ichthyol. 2017;33:1027-33.   DOI
111 Akand AM, Hasan MR, Habib MBA. Utilization of carbohydrate and lapis as dietary energy source by stinging catfish, Heteropneustes fossilis (Bloch). In: De Silva SS, editor. Fish nutrition research in Asia. Proceedings of the fourth Asian fish nutrition workshop. Manila: Asian Fisheries Society special publication, Asian Fishery Society; 1991. p. 93-100.
112 Alok D, Krishnan T, Talwar GP, Garg LC. Induced spawning of catfish, Heteropneustes fossilis (Bloch), using D-$Lys^6$ salmon gonadotropin-releasing hormone analog. Aquaculture. 1993;115:159-67. https://doi.org/10.1016/0044-8486(93)90366-7.   DOI
113 Anelli LC, Olle CD, Costa MJ, Rantin FT, Kalinin AL. Effects of temperature and calcium availability on ventricular myocardium from the neotropical teleost Piaractus mesopotamicus (Holmberg 1887-Teleostei, Serrasalmidae). J Ther Biol. 2004;29:103-13. https://doi.org/10.1016/j.jtherbio.2003.12.001.   DOI
114 Anwar MF, Jafri AK. Preliminary observations on growth, food conversion body composition of catfish, Heteropneustes fossilis Bloch, fed varying levels of dietary lipids. J Inland Fish Soc India. 1992;24(2):45-9.
115 AOAC. Official methods of analysis of the association of official analytical chemist. 16th ed. Arlington: AOAC; 1995.
116 Bendiksen EA, Berg A, Jobling M, Arnesen AM, Masoval K. Digestibility, growth and nutrient utilization of Atlantic salmon parr (Salmo salar L.) in relation to temperature, feed fat content and oil source. Aquaculture. 2003;224:283-99.   DOI
117 Azaza MS, Dhraief MN, Kraiem MM. Effects of water temperature on growth and sex ratio of juvenile Nile Tilapia Oreochromis niloticus (Linneaus) reared in geothermal waters in southern Tunisia. J Thermal Biol. 2008;33(2):98-105.   DOI
118 Bailey J, Alanara A. Effect of feed portion size on growth of rainbow trout, Oncorhynchus mykiss (Walbaum) reared at different temperatures. Aquaculture. 2006;253:728-30.   DOI
119 Baker DH. Problems and pitfalls in animal experiments designed to establish dietary requirements for essential nutrients. J. Nutr. 1986;116:2339-49 https://doi.org/10.1093/jn/116.12.2339.   DOI
120 Bever KN, Chenoweth M, Dunn A. Amino acid gluconeogenesis and glucose turnover in kelp bass (Paralabrax sp.). Am J Physiol. 1981;240(3):246-52 https://doi.org/10.1152/ajpregu.1981.240.3.R246.   DOI
121 Bhikajee M, Gobin P. Effect of temperature on the feeding rate and growth of a red tilapia hybrid. In: Proceedings from the 4th International Symposium on Tilapia Aquaculture, vol. 1; 1998. p. 131-40.
122 Brett JR. Environmental factors and growth. In: Hoar WS, Randall DJ, Brett JR, editors. Fish Physiology, Vol 8. New York: Academic Press; 1979. p. 599-675.
123 Brown JA, Pepin P, Methven DA, Somerton DC. The feeding, growth and behaviour of juvenile cod, Gadus morhua, in cold environments. J Fish Biol. 1989;35:373-80. https://doi.org/10.1111/j.1095-8649.1989.tb02989.x.   DOI
124 Burgess WE. An atlas of freshwater and marine catfishes: a preliminary survey of the Siluriformes. Neptune City: T.F.H. Publications; 1989.