• 제목/요약/키워드: Thermal Cycle Test

검색결과 250건 처리시간 0.021초

용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제1보 : 기계적 특성 및 조직 (Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 1st Report : on the Mechanical Properties and Microstructure)

  • 안석환;정정환;남기우
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.64-71
    • /
    • 2005
  • The welding methods have been applied to the most structural products used in the automobile, ship construction, and construction. The structure steel must have sufficient strength of structure; However, the mechanical properties of the welded part changes when it is welded. Therefore, the stability or life of the structure may be affected by the changed mechanical properties. The mechanical properties of the welded part must be examined in order to ensure the safety of structure. In this research, the SS400 steel and the STS304 steel were used to estimate the mechanical properties of the HAZ by weld thermal cycle simulation. In this study, the materials were used to examine the weld thermal cycle simulation characteristic, under two conditions: the drawing with diameter of $\Phi$10 and the residual stress removal treatment. To examine the mechanical properties by the weld thermal cycle simulation, the tensile test was carried out in room temperature. The crosshead speed was lmm/min.

Heat Cycle Test에서 XLPE 절연체에 인가되는 열이력의 추정 (Estimation of Thermal History in XLPE Insulated Cable during Heat Cycle Test)

  • 김영호;이상진;이건주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1425-1427
    • /
    • 1998
  • The thermal history of XLPE insulated cable during heating cycle voltage test specified by IEC 840 was examined by DSC(differential scanning calorimetry) method, of which the principal is on the basis of the phenomenon that the crystals in polyethylene are rearranged as it is annealed near/below the melting temperature. From the result, it can be estimated that XLPE insulation near the conductor was exposed at the temperature of about $100^{\circ}C$ with the electrical stress through the test.

  • PDF

316 스테인리스강의 입계부식에 미치는 열사이클과 응력의 영향 (Effect of Thermal Cycle and Stress on the Intergranular Corrosion in 316 Stainless Steel)

  • 정병호;김무길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.709-715
    • /
    • 2006
  • The effects of thermal cycle condition and applied stress on the intergranular corrosion in austenitic 316 type stainless steels were investigated. Specimens were solution-treated at 1100$^{\circ}C$ for one hour and then sensitized in the temperature range of $500{\sim}800^{\circ}C$ by holding $2{\sim}300s$ with a various applied stresses of $0{\sim}8kg/mm^2$. Degree of sensitization. DOS %, was measured through polarization curve by electrochemical DL-EPR test. Microstructural observations were also conducted DOS % increased with an increase of sensitization temperature and/or holding time. Increase of applied stress resulted in increase of DOS % and more corroded surface because of acceleration of intergranular corrosion and fine grain size due to the stress. Cr depleted zone near grain boundary was observed. The amount of depletion was profounded with an increase of sensitization temperature, holding time and applied stress. $M_{23}C_6$ carbides were precipitated discontinuously at grain boundary. However, its amount was relatively small in the thermal cycle condition of 800$^{\circ}C$, 300sec and 4kg/mm$^2$.

태양열을 동력원으로 한 물펌프 연구개발 - 에너지변환실험과 성능해석 - (Development of Solar Powered Water Pump - Energy conversion test and performance analysis -)

  • 김영복;이양근;이승규;김성태;나우정;정병섭
    • Journal of Biosystems Engineering
    • /
    • 제27권4호
    • /
    • pp.327-334
    • /
    • 2002
  • In this study, energy conversion from thermal energy to mechanical power by using n-pentane was tested and exergy variation, cycle number, water quantity pumped and thermal efficiency were analyzed. The energy conversion was done and the water head could be ten meters on the experimental conditions. The operating temperature range of cycle was recommended to be around the liquid-vapour saturation temperature of the working fluid on the viewpoint of the maximum work. The cycle diagram was analyzed by the exergy analysis. For the constant water head, the cycle number was decreased and the water quantity per day was increased and thermal efficiency become higher when the water quantity per cycle become increasing. For the constant pumping water quantity per cycle, cycle number and the water quantity per day was decreased and the thermal efficiency become higher because the saturation temperature become higher when the water head become higher.

Data Analysis of KOMPSAT Thermal Test in Simulated On-orbit Environment

  • Kim, Jeong-Soo;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권2호
    • /
    • pp.30-42
    • /
    • 2000
  • On-orbit thermal environment test of KOMPSAT was performed in early 1999. An analysis of the test data are addressed in this paper. For the thermal-environmental simulation of spacecraft bus, an artificial heating through the radiator zones and onto some critical heat-dissipating electronic boxes was made by Absorbed-heat Flux Method. Test data obtained in terms of temperature history were reduced into flight heater duty cycles and converted into the total electrical power required for spacecraft thermal control. Verification result of flight heaters dedicated to the bus thermal control is presented. Additionally, an exhaustive heating-control process for maintaining the spacecraft thermally safe and for realistic simulation of the orbital-thermal environment during the test are graphically shown. Qualitative suggestions to post-test model correlation are given in consequency of the analysis.

  • PDF

Thermal cycle하에서의 OSP 표면 처리된 BGA 패키지의 신뢰성 연구 (Reliability of BGA Package with OSP Surface Finish under Thermal Cycle)

  • 이종범;노보인;이영호;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.206-208
    • /
    • 2006
  • The reliability of BGA (ball grid array) package with OSP (organic surface preservative) surface finish under thermal cycle was investigated by using SEM (scanning electron microscopy), EDS(energy dispersive spectroscopy), image tool and ball shear test. The IMCs (intermetallic compounds) were increased with increasing number of thermal cycles. However, the shear strengths of solder ball were decreased with increasing number of thermal cycles. The order of solders which had the highest shear strength as follow: Sn-3.5wt%Ag-0.7wt%Cu, Sn-0.7wt%Cu, Sn-37wt%Pb.

  • PDF

316 스테인레스강의 열충격 특성 (Thermal Shock Properties of 316 Stainless Steel)

  • 이상필;김영만;민병현;김창호;손인수;이진경
    • 한국해양공학회지
    • /
    • 제27권5호
    • /
    • pp.22-27
    • /
    • 2013
  • The present work dealt with the high temperature thermal shock properties of 316 stainless steels, in conjunction with a detailed analysis of their microstructures. In particular, the effects of the thermal shock temperature difference and thermal shock cycle number on the properties of 316 stainless steels were investigated. A thermal shock test for 316 stainless steel was carried out at thermal shock temperature differences from $300^{\circ}C$ to $1000^{\circ}C$. The cyclic thermal shock test for the 316 stainless steel was performed at a thermal shock temperature difference of $700^{\circ}C$ up to 100 cycles. The characterization of 316 stainless steels was evaluated using an optical microscope and a three-point bending test. Both the microstructure and flexural strength of 316 stainless steels were affected by the high-temperature thermal shock. The flexural strength of 316 stainless steels gradually increased with an increase in the thermal shock temperature difference, accompanied by a growth in the grain size of the microstructure. However, a thermal shock temperature difference of $800^{\circ}C$ produced a decrease in the flexural strength of the 316 stainless steel because of damage to the material surface. The properties of 316 stainless steels greatly depended on the thermal shock cycle number. In other words, the flexural strength of 316 stainless steels decreased with an increase in the thermal shock cycle number, accompanied by a linear growth in the grain size of the microstructure. In particular, the 316 stainless steel had a flexural strength of about 500 MPa at 100 thermal-shock cycles, which corresponded to about 80% of the strength of the as-received materials.

변형률분할법에 의한 12Cr 단조강의 열피로 수명예측 (Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method)

  • 하정수;옹장우;고승기
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.

동시경화 하이브리드 금속/복합재료 구조물의 제조 잔류 열응력 제거를 위한 경화사이클에 관한 연구 (Investigation of cure cycle for co-cured metal/composite hybrid structures without fabricating thermal residual stress)

  • 김학성;박상욱;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.83-87
    • /
    • 2004
  • In this work, the cure cycle of co-cured metal/composite structure was investigated to decrease fabricating thermal residual stresses between the metal and the composite material. DSC (Differential scanning calorimetry) experiment and static lap shear test of co-cured aluminum/composite double lap joint as well as the curvature experiment of co-cured steel/composite strip were performed to investigate the effect of curing cycle on the thermal residual stress of co-cured hybrid structures. From the experiments, it was found that post curing method after abrupt cooling of co-cured aluminum/composite hybrid structure at certain point of degree of cure during curing process could eliminate fabricating the thermal residual stresses.

  • PDF

접합재의 고온강도 특성 평가 (Evaluation of High Temperature Strength Characteric in Joint Metal)

  • 허선철;박영철;윤한기;박원조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.103-108
    • /
    • 2000
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress development when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of $Si_3N_4/STS304$ joints quantitatively and to compare the strength of Joints. The difference of residual stress is measured when repeated thermal cycle is loaded under the conditions of the practical use of the ceramic/metal joint. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a residual it is known that the stress of joint decreases as the number of thermal cycle increases.

  • PDF