• 제목/요약/키워드: Thermal Contact Resistance

검색결과 267건 처리시간 0.032초

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

접촉하는 두 물체 사이의 접촉 열저항 (Thermal Contact Resistance of Two Bodies in Contact)

  • 곽홍섭;정재택
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.66-72
    • /
    • 2004
  • 전도 열전달 분야에서 두 물체가 접해 있는 경우, 접촉 열저항은 고려해야 할 중요한 요소이다. 특히 최근에는 전자부품의 과열방지를 위한 열 소산과 관련하여 접촉 열저항 문제는 중요하게 대두되고 있으며 이에 관련한 많은 이론적 연구와 응용연구가 수행되고 있다. 접촉 열저항은 주로 거친 두 물체표면의 불완전접촉에 기인한다. 본 연구에서는, 접촉하는 두 물체사이의 접촉면을 이상화시킨 비교적 간단한 문제를 이론적으로 해석함으로써 접촉면의 틈새 형상 및 비접촉면적비(비접촉면적/외관접촉면적)의 크기에 따른 접촉 열저항의 크기를 구하였다.

복합 단열 매트 보강 폴리우레탄 폼의 열적 성능 및 내충격성 평가 (Thermal Performance and Impact Resistance Evaluations of Composite Insulation Mat Reinforced Polyurethane Foam)

  • 황병관;배진호;이제명
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.290-295
    • /
    • 2019
  • 본 연구에서는 액화 천연 가스 운반선 단열 시스템에 적용되는 폴리우레탄 폼(Polyurethane foam, PUF)의 열적 성능 및 내충격성을 향상시키기 위한 목적으로, PUF에 복합 단열 매트를 보강하였다. 복합 단열 매트는 극저온 환경에서 운용이 가능한 케블라, 에어로겔, 그리고 크라이오겔 매트를 선정하였다. 열적 성능은 $20^{\circ}C$의 상온에서 열전도율을 측정하였으며, 내충격성은 $20^{\circ}C$의 상온 및 $-163^{\circ}C$의 극저온에서 30 J의 충격에너지로 낙하 충격 시험을 수행하여 측정하였다. 측정된 열전도율은 유효 열전도율 이론 값을 통해 보강되지 않은 PUF와 비교하였으며, 내충격성은 접촉력, 접촉 시간, 그리고 흡수에너지를 평가하였다. 실험 결과 크라이오겔 복합 매트 보강 시 가장 우수한 열적 성능을 나타났으며, 내충격성은 에어로겔 복합 매트 보강 시 가장 우수하게 나타났다.

Analysis of the DC Resistance of the Butt Joint using the Random Contact Patterns of Strands

  • Lee, Ho-Jin;Lee, Sang-Il;Lee, Bong-Sang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.17-21
    • /
    • 2004
  • The butt joint was verified to satisfy the thermal stability of the ITER magnet system through the ITER CS model coil test. Since the contact area in the butt joint is limited to the cross section of the cable, it is necessary to analyze and control the joining parameters precisely for improving the DC resistance. It is difficult to simulate the cables, which are composed of a lot of strands, as three-dimensional models using the commercial code. The random numbers were used to simulate many kinds of contact patterns of the strands on the bonding surface for calculating the bonding area and the DC resistance of the butt joint. The calculated DC resistance decreases with an increase of cable filling factor in terminal. The calculated DC resistance of a 0.9 cable filling factor is about 0.48 n-Ohm, which is about one-tenth of that in the CS model coil test when not considering the electrical contact resistance. From this difference, the electrical contact resistance between the strands and copper sheet was calculated.

열산화법에 의한 phosphorus 에미터 pile-up (Pile-up of phosphorus emitters using thermal oxidation)

  • 부현필;강민구;이경동;이종한;탁성주;김영도;박성은;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.122.1-122.1
    • /
    • 2011
  • Phosphorus is known to pile-up at the silicon surface when it is thermally oxidized. A thin layer, about 40nm thick from the silicon surface, is created containing more phosphorus than the bulk of the emitter. This layer has a gaussian profile with the peak at the surface of the silicon. In this study the pile-up effect was studied if this layer can act as a front surface field for solar cells. The effect was also tested if its high dose of phosphorus at the silicon surface can lower the contact resistance with the front metal contact. P-type wafers were first doped with phosphorus to create an n-type emitter. The doping was done using either a furnace or ion implantation. The wafers were then oxidized using dry thermal oxidation. The effect of the pile-up as a front surface field was checked by measuring the minority carrier lifetime using a QSSPC. The contact resistance of the wafers were also measured to see if the pile-up effect can lower the series resistance.

  • PDF

고분자 전해질 연료전지용 분리판으로서 스테인리스강에 HVOF 용사된 AISI316-WC 코팅층 (HVOF Thermal Sprayed AISI316-WC Coating Layer on Stainless Steel for PEMFC Bipolar Plate)

  • 남대근
    • 신재생에너지
    • /
    • 제4권1호
    • /
    • pp.31-36
    • /
    • 2008
  • Stainless steels have been widely considered as metallic bipolar plates, due to their passive surface film, which is good for corrosion resistance. However, the high resistivity of the passive film increases interfacial contact resistance between the bipolar plates and the electrodes. Stainless steels thermal spray coated with a mixture of tungsten carbide and stainless steel powders showed that the coated layer safely combined with the matrix but they suffered many internal defects including voids and cracks. Many cracks were formed in the coated layer and the interface of the matrix and the coated layer during the rolling process. The coated and rolled stainless steels showed lower interfacial contact resistance and corrosion resistance than bare stainless steel because of low resistivity of tungsten carbide and numerous defects, which caused crevice corrosion, in the coated layer.

  • PDF

은 박막이 코팅된 베어링 표면의 구름 저항 거동 고찰 (An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Silver Film)

  • 양승호;공호성;윤의성;권오관
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.101-110
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure silver coated 52100 bearing steel. Pure silver coatings ranging from 80 nm to several micrometers were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the influence of coating thickness on the tribological rolling behavior. The existence of optimum film thickness which revealed minimum rolling resistance was discovered. A careful analysis on the contact surfaces for the optimum film thickness has been performed. The contact patches produced by the transferred silver films played an important role for the rolling resistance to keep low.

  • PDF

은 박막이 코팅된 베어링 표면의 구름 저항 거동 고찰 (An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Silver Film)

  • 양승호;공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.85-92
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure silver coated 52100 bearing steel. Pure silver coatings ranging from 80 nm to several micrometers were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the influence of coating thickness on the tribological rolling behavior. The existence of optimum film thickness which revealed minimum rolling resistance was discovered. A careful analysis on the contact surfaces for the optimum film thickness has been performed. The contact patches produced by the transferred silver films played an important role for the rolling resistance to keep low.

초전도 Power Supply의 전류펌핑 과정에서 발생하는 조기 퀜치발생 진단 (A study on the Detection of Premature Quench Generated in the Process of Current Pumping in a Superconducting Power Supply)

  • 김호민;배준한;노정섭;심기덕;장원갑;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.244-246
    • /
    • 1997
  • This paper is to analyze the Premature Quench characteristics of a rotating magnet type superconducting fluxpump and consider the method of detecting and protecting this premature quench. Practically, there is contact resistance between the fluxpump and the load, namely the S.C. magnet. The thermal increase due to the contact resistance cause the premature quench before the charging current amounts to the critical current of S.C magnet. Therefore, this paper is devoted to solving the heat equation on contact region using cylindrical coordinates and to calculating the rate of thermal increase during the current is pumped up. Doing so, the predictive value of the maximum pumping current is obtained. It has been verified that the results of simulation are coincident with those of experiment. It must be considered essentially to minimize the contact resistance in designing the S.C fluxpump system in order to protect the premature quench and improve the maximum pumping current.

  • PDF

2자유도 진동계의 운동정보 전달에 관한 연구;경계면열저항 (A Study on the Transfer of the Oscillator's Motion Information with 2 Degrees of Freedom;Thermal Boundary Resistance)

  • 최순호;최현규;김창복;김경근;윤석훈;오철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1102-1107
    • /
    • 2005
  • The analysis of the thermal boundary resistance is very important in the both cases of microscale and macroscale systems because it plays a role of thermal barrier against a heat flow. Especially, since fairly large heat energy is generated in microscale or nanoscale systems with electronic chips, the thermal boundary resistance is a key factor to guarantee the performance of those devices. In this study, the transfer of the oscillator's motion information with 2 degrees of freedom is investigated for clarifying the mechanism of a thermal boundary resistance. We found that the transfer of the oscillator's motion information is defined as a cross-correlation coefficient and the magnitude of it determines the temperature jump over a solid interface. That is, the temperature jump over an interface increases as the magnitude of a cross-correlation coefficient decreases and vice versa.

  • PDF