• Title/Summary/Keyword: Thermal Conductivity Ratio

Search Result 305, Processing Time 0.037 seconds

Thermal Characteristics of Cement Concrete Mixed with Wasted Vinyl Aggregates (폐비닐 골재가 혼합된 시멘트 콘크리트의 열 특성)

  • Yeom, Woo Seong;An, Gi Hong;Liu, Ju Ho;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.79-86
    • /
    • 2014
  • PURPOSES : In this study, wasted vinyl aggregate, which possesses better thermal properties than natural aggregate, was used in cement concrete mixture to develop more economical concrete with thermal insulation and freeze prevention effects. METHODS : Slump and air content of the fresh concrete, which substituted its 0%, 5%, and 10% of coarse aggregate with wasted vinyl aggregate, were measured. Compressive strength, Poisson's ratio, elastic modulus, and splitting tensile strength of hardened concrete were measured by laboratory tests. Thermal properties of concrete such as coefficient of thermal expansion, thermal conductivity, and specific heat were also measured according to replacement ratio of wasted vinyl aggregate. Finally, the thermal insulation and freeze prevention effectiveness of the concrete mixed with wasted vinyl aggregate was confirmed through finite element analysis of road pavement crossing above concrete box culvert made from wasted vinyl aggregate. RESULTS : Even though the physical properties of wasted-vinyl-aggregate concrete such as compressive strength, Poisson°Øs ratio, elastic modulus, and splitting tensile strength were inferior to those of ordinary concrete, they met requirements for structural concrete. The thermal properties of concrete were improved by wasted vinyl aggregate because it decreased thermal conductivity and increased specific heat of the concrete. According to the result of finite element analysis, temperature variation in pavement subgrade was mitigated by box culvert made from wasted-vinyl-aggregate concrete. CONCLUSIONS : Through the laboratory test and finite element analysis of this study, it was concluded that the concrete structures made from wasted vinyl aggregate showed thermal insulation and freeze prevention effects.

Evaluation of Heat Transfer Characteristics in Double-Layered and Single-Layered Soils (이층지반과 단일지반의 열전달 거동 특성 평가)

  • Yoon, Seok;Park, Skan;Park, Hyun-Ku;Go, Gyu-Hyun;Lee, Seung-Rae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • This paper presents how to analyze heat transfer characteristics of double-layered soils. Thermal response tests were conducted to measure the ground thermal conductivities of Joomunjin sand and double layered soils filled in a steel box of which the size is $5m{\times}1m{\times}1m$. Double-layered soils were composed of Joomunjin sand and Kaoline clay. Each thermal conductivity of Joomunjin sand and Kaloine clay was measured by using Heat Flow Meter considering different void ratio. The ground thermal conductivity of double-layered soils was 15% smaller than that of Joomunjin sand.

Thermal properties of latent heat storage microcapsule-water slurry

  • Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.807-812
    • /
    • 2015
  • A microcapsule water slurry is a latent heat-storage material having a low melting point. In this study, the thermal properties of a microcapsule water slurry are measured. The physical properties of the test microcapsule water slurry, i.e., thermal conductivity, specific heat, latent heat, and density, are measured, and the results are discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). It is clarified that Eucken's equation can be applied to the estimation of the thermal conductivity of the microcapsule water slurry. Useful correlation equations of the thermal properties of the microcapsule water slurry are proposed in terms of the temperature and concentration ratio of the microcapsule water slurry constituents.

An Experimental Study on Thermal Property of Porous Concrete Containing Bottom Ash (바텀애시를 활용하는 다공성 콘크리트의 열전도 특성에 관한 실험 연구)

  • Jeong, Seung-Tae;Kim, Bum-Soo;Park, Ji-Hun;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.625-632
    • /
    • 2021
  • In this paper, the applicability of bottom ash to insulation concrete was investigated to increase the utilization of bottom ash. Bottom ash was used as the aggregates in porous concrete and extensive experiments were conducted to investigate the characteristics of porous concrete using two types of bottom ash aggregates. The water-binder ratios of 0.25 and 0.35 were chosen and concrete specimens was produced with the compaction of 0.5, 1.5, and 3.0MPa to analyze the material properties at different compaction conditions. After concrete specimens were cured for 28 days at water tanks, unit weight, total void ratio, and thermal conductivity were measured. Based on the measured experimental results, the relationships between the unit weight, total void ratio, and thermal conductivity of porous concrete containing bottom ash was presented.

An Experimental Study on Thermal Conductivity of Controlled Low Strength Materials with Coal Ash (석탄회를 활용한 CLSM의 열전도도에 관한 실험적 연구)

  • Lee, Seung Jun;Lee, Jong Hwi;Cho, Hyun Soo;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.95-104
    • /
    • 2012
  • Due to current interest in creation of urban space and urban landscape, more emphasis has been placed on underground space development. With increasing number of underground power cables and its importance, a study of backfill materials for pipe is now imperative. Backfill materials require outstanding thermal characteristics since breakdown of cable insulation can be caused if heat generated from transmission of underground power cables had not been effectively discharged through backfill materials. Also, coal ash, which are industrial by-products, is being produced in high volume every year. Among them, ponded ash (PA) is not recycled and instead, mostly buried. Therefore in this study, thermal conductivity test based on mixture ratio (PA, ponded ash : FA, fly ash) was performed to evaluate the thermal conductivity characteristics of CLSM (controlled low strength materials) with coal ash. The results indicate that the mixture ratio (PA, ponded ash : FA, fly ash) of 80:20, water contents of 28~30%, and cement contents of 7-11% showed the highest conductivity at 0.796~0.884W/mK and thus, considered optimal in terms of recycling ponded ash (PA) as well as for maximizing utilization as backfill materials for pipe in underground.

Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation (열변형 해석을 위한 허니컴 샌드위치 평판의 열 및 탄성 물성치 예측에 관한 연구)

  • Hong, Seok Min;Lee, Jang Il;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties.

Physical Properties of Rigid Polyurethane Foams Prepared by Co-Blowing Agents (Co-blowing agent에 따른 경질 폴리우레탄 폼의 물성 변화 연구)

  • Kim Sang Bum;Koh Sung Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.1-7
    • /
    • 2004
  • The physical properties of rigid polyurethane foam(PUF) synthesized using various types of blowing agents such as water, HFC-365mfc, HFC-245fa, HCFC-l4lb, CFC-11 and n-pentane were studied. The blending effect of blowing agents were also studied. The thermal conductivity, reaction rate, and cell morphology of the PUF with various blending ratio of blowing agents were investigated. The PUF blown by water shows the highest compressive strength among other single blowing agents. The thermal conductivity of PUFs blown by HFC-245fa and HFC-365mfc are close to that of PUFs blown by CFC-11. When HFC-365mfc was mixed with HFC-245fa(30mo1e$\%$) as coblowing agent, the mechanical property shows the highest value among other coblowing agents. It is that the thermal conductivity of PUFs depends on cell size of PUFs as well as thermal conductivity of blowing agent in gaseous form.

  • PDF

The Thermal Conductivity Characteristics of Carbon Block with Nano-Diamond (나노다이아몬드가 첨가된 탄소블록의 열전도도 특성)

  • Jun Soong Lee;Ji Hun Mun;Sungwook Joo;Seung Uk Lee;Min Il Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.608-612
    • /
    • 2023
  • Nano-diamond (ND) was added during the carbon block preparation process to increase the thermal conductivity of the carbon block. Added ND controlled the generated pore of carbon block due to the volatilization of the binder pitch during the carbonization process. The ND was added to the kneading process of coke and binder pitch, and carbon blocks were prepared by pressing and carbonization. As the amount of added ND increased, the ND ratio of the carbon block increased. The added ND made a pass-way for generated gas by volatilizing the binder pitch during the carbonization process, increasing the density of the carbon block and reducing the porosity. The thermal conductivity of the carbon block was improved by increased density, lowered porosity, and the high thermal conductivity of added ND.

Conductivity of PAN/PVDF based Polymer Electrolyte as a Function of Plasticizer Mixed Ratio (가소제 혼합비에 따른 PAN/PVDF계 고분자 전해질의 이온 전도 특성)

  • Lee, Jae-An;Kim, Jong-Uk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.261-264
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. This paper describes temperature dependence of conductivity, impedance spectroscopy, electrochemical properties of PAN/PVDF electrolytes as a function of a mixed ratio. PAN/PVDF based polymer electrolyte films were prepared by thermal gellification method of preweighed PAN/PVDF, plasticizer and Li salt. By adding PVDF and as a function of plasticizer mixed ratio to PAN-LiClO4 electrolyte, its conductivity was higher than that of PAN-$LiClO4_4$ electrolyte. The conductivity of PAN/PVDF electrolytes was $10^{-3}S/cm$. $10PAN10PVDFLiClO_4PC_5EC_5$ electrolyte shows the better conductivity of the others. Steady state current method and ac impedance used for the determination of transference numbers in PAN/PVDF electrolyte film. The transference number of $10PAN10PVDFLiClO_4PC_5EC_5$ electrolyte is 0.45.

  • PDF

The Effect of Thermal Properties on Temperature Development of Concrete (열적성질을 고려한 콘크리트의 수화발열특성에 관한 연구)

  • Shon, Myung-Soo;Park, Yon-Dong;Kim, Hoon;Kim, Ho-Young;Lee, Yang-Soo;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.97-102
    • /
    • 1997
  • In this study, a predictive method which was modified from KIshi's model for the temperature development of concrete was developed by using mineral compounds of clinker and pozzolans. Temperature dependent heat generation of reaction was also considered. Specific heat considering the effect of mix proportion and temperature was calculated with experimental data in the literatures. Thermal conductivity considering the effect of mix proportion and temperature was experimentally investigated. Through this research it was found that the developed method considering thermal properties accurately predicted adiabatic temperature rise of concrete without the experiment. It was also found that the thermal conductivity of concrete could be predicted by the volume ratio of each component of mix proportion and was independent of temperature within the normal climatic range.

  • PDF