• Title/Summary/Keyword: Thermal Buckling

Search Result 228, Processing Time 0.028 seconds

Thermal Buckling of Thick Laminated Composite Plates under Uniform Temperature Distribution (균일분포 온도하의 두꺼운 복합 재료 적층판의 열적 좌굴 해석)

  • Lee, Young-Shin;Lee, Yeol-Wha;Yang, Myung-Seog;Park, Bock-Sun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1686-1699
    • /
    • 1993
  • In this paper, the thermal buckling of thick composite angle-ply laminates subject to uniform temperature distribution is studied. For the plates of 4-edges simply supported condition and those of 4-edges clamped condition, the critical buckling temperatue is derived, using tile finite element method based on the shear deformation theory. The effects of lamination angle, layer number, laminate thickness, plate aspect ratio and boundary constraints upon the critical buckling temperature are presented.

Hygro-thermal post-buckling analysis of a functionally graded beam

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.459-471
    • /
    • 2019
  • This paper presents post-buckling analysis of a functionally graded beam under hygro-thermal effect. The material properties of the beam change though height axis with a power-law function. In the nonlinear kinematics of the post-buckling problem, the total Lagrangian approach is used. In the solution of the problem, the finite element method is used within plane solid continua. In the nonlinear solution, the Newton-Raphson method is used with incremental displacements. Comparison studies are performed. In the numerical results, the effects of the material distribution, the geometry parameters, the temperature and the moisture changes on the post-buckling responses of the functionally graded beam are presented and discussed.

Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • An investigation of the nonlinear thermal buckling behavior of a nano-sized beam constructed from intelligent materials called piezo-magnetic materials has been presented in this article. The nano-sized beam geometry has been considered based on two assumptions: an ideal straight beam and an imperfect beam. For incorporating nano-size impacts, the nano-sized beam formulation has been presented according to nonlocal elasticity. After establishing the governing equations based on classic beam theory and nonlocal elasticity, the nonlinear buckling path has been obtained via Galerkin's method together with an analytical trend. The dependency of buckling path to piezo-magnetic material composition, electro-magnetic fields and geometry imperfectness has been studied in detail.

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation

  • Karami, Behrouz;Shahsavari, Davood;Nazemosadat, Seyed Mohammad Reza;Li, Li;Ebrahimi, Arash
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • Thermal buckling behavior of porous functionally graded nanobeam integrated with piezoelectric sensor and actuator based on the nonlocal higher-order shear deformation beam theory is investigated for the first time. Its material properties are assumed to be temperature-dependent and varying along the thickness direction according to the modified power-law rule. Note that the porosity with even type is considered herein. The equations of motion are obtained through Hamilton's principle. The influences of several parameters (such as type of temperature distribution, external electric voltage, material composition, porosity, small-scale effect, Ker foundation parameters, and beam thickness) on the thermal buckling of FG nanobeam are investigated in detail.

Thermal Buckling Characteristics of Composite Conical Shell Structures

  • Woo, Ji-Hye;Rho, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • Thermal Buckling and free vibration analyses of multi-layered composite conical shells based on a layerwise displacement theory are performed. The Donnell's displacement-strain relationships of conical shell structure are applied. The natural frequencies are compared with the ones existing in the previous literature for laminated conical shells with several cone semi-vertex angles. Moreover, the thermal buckling behaviors of the laminated conical shell are investigated to consider the effect of the semi-vertex angle, subtended angle, and radius to thickness ratio on the structural stability.

Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.283-293
    • /
    • 2013
  • This paper deals with the applicability of a new extended layerwise optimization method for thermal buckling load optimization of laminated composite plates. The design objective is the maximization of the critical thermal buckling of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT

  • Chikh, Abdelbaki;Tounsi, Abdelouahed;Hebali, Habib;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.289-297
    • /
    • 2017
  • This work presents a simplified higher order shear deformation theory (HSDT) for thermal buckling analysis of cross-ply laminated composite plates. Unlike the existing HSDT, the present one has a new displacement field which introduces undetermined integral terms and contains only four unknowns. Governing equations are derived from the principle of the minimum total potential energy. The validity of the proposed theory is evaluated by comparing the obtained results with their counterparts reported in literature. It can be concluded that the proposed HSDT is accurate and simple in solving the thermal buckling behavior of laminated composite plates.

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.

Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR (도상이 장대 레일의 선형 온도 좌굴에 미치는 영향)

  • 강영종;임남형;신정렬;양재성
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

Thermal buckling load optimization of laminated plates with different intermediate line supports

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.207-223
    • /
    • 2012
  • This paper deals with critical thermal buckling load optimization of symmetrically laminated four layered angle-ply plates with one or two different intermediate line supports. The design objective is the maximization of the critical thermal buckling load and a design variable is the fibre orientation in the layers. The first order shear deformation theory and nine-node isoparametric finite element model are used for the finite element solution of the laminates. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is used. Finally, the numerical analysis is carried out to investigate the effects of location of the internal line supports, plate aspect ratios and boundary conditions on the optimal designs and the results are compared.