• Title/Summary/Keyword: Thermal Buckling

Search Result 229, Processing Time 0.02 seconds

Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations

  • She, Gui-Lin;Ren, Yi-Ru;Xiao, Wan-Shen;Liu, Haibo
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.729-736
    • /
    • 2018
  • This paper studies thermal buckling and post-buckling behaviors of functionally graded materials (FGM) tubes subjected to a uniform temperature rise and resting on elastic foundations via a refined beam model. Compared to the Timoshenko beam theory, the number of unknowns of this model are the same and no correction factors are required. The material properties of the FGM tube vary continuously in the radial direction according to a power function. Two ends of the tube are assumed to be simply supported and in-plane boundary conditions are immovable. Energy variation principle is employed to establish the governing equations. A two-step perturbation method is adopted to determine the critical thermal buckling loads and post-buckling paths of the tubes with arbitrary radial non-homogeneity. Through detailed parametric studies, it can be found that the tube has much higher buckling temperature and post-buckling strength when it is supported by an elastic foundation.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

Critical thermal buckling analysis of porous FGP sandwich plates under various boundary conditions

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.29-46
    • /
    • 2023
  • Critical thermal buckling of functionally graded porous (FGP) sandwich plates under various types of thermal loading is considered. It is assumed that the mechanical and thermal nonhomogeneous properties of FGP sandwich plate vary smoothly by distribution of power law across the thickness of sandwich plate. In this paper, porosity defects are modeled as stiffness reduction criteria and included in the rule of mixture. The thermal environments are considered as uniform, linear and nonlinear temperature rises. The critical buckling temperature response of FGM sandwich plates has been analyzed under various boundary conditions. By comparing several numerical examples with the reference solutions, the results indicate that the present analysis has good accuracy and rapid convergence. Further, the effects of various parameters like distribution shape of porosity, sandwich combinations, aspect ratio, thickness ratio, boundary conditions on critical buckling temperature of FGP sandwich plate have been studied in this paper.

Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this article, thermal post-buckling and primary resonance of the porous functionally graded material (FGM) beams in thermal environment considering the geometric imperfection are studied, the material properties of FGM beams are assumed to vary along the thickness of the beam, meanwhile, the porosity volume fraction, geometric imperfection, temperature, and the elastic foundation are considered, using the Euler-Lagrange equation, the nonlinear vibration equations are derived, after the dimensionless processing, the dimensionless equations of motion can be obtained. Then, the two-step perturbation method is applied to solve the vibration problems, the resonance and thermal post-buckling response relations are obtained. Finally, the functionally graded index, the porosity volume fraction, temperature, geometric imperfection, and the elastic foundation on the resonance behaviors of the FGM beams are presented. It can be found that these parameters can influence the thermal post-buckling and primary resonance problems.

Analysis of Thermo-Viscoelastic Residual Stresses and Thermal Buckling of Composite Cylinders (복합재 원통구조물의 열-점탄성적 잔류음력 및 열좌굴 해석)

  • Kim, Cheol;Kim, Yeong-Kook;Choi, Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1653-1665
    • /
    • 2002
  • One of the most significant problems in the processing of composite materials is residual stresses. The residual stresses may be high enough to cause cracking in the matrix even before external loads are applied and can degrade the integrity of composite structures. In this study, thermo-viscoelastic residual stresses occurred in the polymeric composite cylinder are investigated. This type of structure is used for the launch vehicle fuselage. The time and degree of cure dependent thermo-viscoelastic constitutive equations are developed and coupled with a thermo-chemical process model. These equations are solved with the finite element method to predict the residual stresses in the composite structures during cure. A launch vehicle experiences high thermal loads during flight and re-entry due to aerodynamic heating or propulsion heat, and the thermal loads may cause thermal buckling on the structure. In this study the thermal buckling analysis of composite cylinders are performed. Two boundary conditions such as all clamped and all simply supported are used for the analysis. The effects of laminates stacking sequences, shapes and residual stresses on the critical buckling temperatures of composite cylinders are investigated. The thermal buckling analysis is performed using ABAQUS.

Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.347-371
    • /
    • 2011
  • This paper focuses on post-buckling analysis of Timoshenko beams with various boundary conditions subjected to a non-uniform thermal loading by using the total Lagrangian Timoshenko beam element approximation. Six types of support conditions for the beams are considered. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. As far as the authors know, there is no study on the post-buckling analysis of Timoshenko beams under uniform and non-uniform thermal loading considering full geometric non-linearity investigated by using finite element method. The convergence studies are made and the obtained results are compared with the published results. In the study, the relationships between deflections, end rotational angles, end constraint forces, thermal buckling configuration, stress distributions through the thickness of the beams and temperature rising are illustrated in detail in post-buckling case.

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.

Design of Thick Laminated Composite Plates for Maximum Thermal Buckling Load (최대 열적 좌굴하중을 갖는 두꺼운 복합재료 적층판의 설계)

  • Lee, Young-Shin;Lee, Yeol-Wha;Yang, Myung-Seog;Park, Bock-Sun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1761-1771
    • /
    • 1993
  • In this paper, the design of thick laminated composite plate subjected to thermal buckling load under uniform temperature distribution is presented. In the design procedures of composite laminated plates for maximum thermal buckling load. the finite element method based on shear deformed theory is used for the analysis or laminated plates. One-demensional search method is used to find optimal fiber orientation and, in the next step, optimal thickness is investigated. Design variables such as fiber orientation and ply thicknesses coefficient of plates are adopted. The optimal design for the symmetric or antisymmetric laminated plates consisted of 4 layers with maximum thermal buckling load is performed.

Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation

  • Benlahcen, Fouad;Belakhdar, Khalil;Sellami, Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.591-602
    • /
    • 2018
  • This research presents an investigation on the thermal buckling resistance of FGM plates having parabolic-concave thickness variation exposed to uniform and gradient temperature change. An analytical formulation is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. A specific function of thickness variation is introduced where it controls the parabolic variation intensity of the thickness without changing the original material volume. The results indicated that the loss ratio in buckling resistance is the same for any gradient temperature profile. Influencing geometrical and material parameters on the loss ratio in the thermal resistance buckling are investigated which may help in design guidelines of such complex structures.