• Title/Summary/Keyword: Thermal Boundary Conditions

Search Result 547, Processing Time 0.024 seconds

THERMO-MECHANICAL ANALYSIS OF OPTICALLY ACCESSIBLE QUARTZ CYLINDER UNDER FIRED ENGINE OPERATION

  • Lee, K.S.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.79-87
    • /
    • 2000
  • Analytical approach was followed in this work under both the steady state and transient operating conditions to find optimum boundary conditions, where the optically accessible quartz engine can run safely without breaking. Temperature and stress distribution was predicted by FEM analysis. In order to validate thermal boundary condition, model reliability and constraint, outside cylinder temperature was measured and previous study was also followed up numerically. To reduce thermal stress level, three types of outside cooling (natural, moderate forced and intensive forced convection) were considered. Effects of clamping force and combustion pressure were conducted to investigate mechanical stress level. Cylinder thickness, was changed to fine the optimum cylinder thickness. The versatile results achieved from this work can be basic indication, which is capable of causing a sudden quartz cylinder breaking during fired operation.

  • PDF

Magnetothermoelastic stress in orthotropic hollow cylinders due to radially symmetric thermal and mechanical loads

  • Dai, H.L.;Fu, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.699-707
    • /
    • 2006
  • In the paper, a direct method of solution of the Navier equation is presented. An orthotropic thick hollow cylinder under a one-dimensional steady-state temperature distribution and a uniform magnetic field with general types of thermal and mechanical boundary conditions is considered. The Navier equation in terms of displacement is derived and solved analytically by the direct method, and magnetothermoelastic responses and perturbation of the magnetic field vector in the orthotropic thick hollow cylinder is described. The present method is suitable for orthotropic thick hollow cylinders placed in an axial magnetic field with arbitrary thermal and mechanical boundary conditions. Finally, numerical examples are carried out and discussed.

A Study on the Heat Transfer and Film Growth During the III-V MOCVD Processes (III-V 족 MOCVD 공정의 열전달 및 필름 성장에 대한 연구)

  • Im, Ik-Tae;Shimogaki, Yukihiro
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1213-1218
    • /
    • 2004
  • Film growth rate of InP and GaAs using TMI, TMG, TBA and TBP is numerically predicted and compared to the experimental results. Obtained results show that the film growth rate is very sensitive to the thermal condition in the reactor. To obtain exact thermal boundary conditions at the reactor walls, we analyzed the gas flow and heat transfer in the reactor including outer tube as well as the inner reactor parts using a full three-dimensional model. The results indicate that the exact thermal boundary conditions are important to get precise film growth rate prediction.

  • PDF

A Study on Heat Transfer and Film Growth Rate During the III-V MOCVD Processes

  • Ik Tae, Im;MASAKAZU, SUGIYAMA;VOSHIAKI, NAKANO;YUKIHIRO, SHIMOGAKI
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.192-199
    • /
    • 2003
  • Film growth of InP and GaAs using TMIn, TMGa, TBAs and TBP is numerically predicted and compared to the experimental results. To obtain exact thermal boundary conditions at the reactor walls, the gas flow and heat transfer are analyzed for full three-dimensional reactor including outer tube as well as the inner reactor parts. The results indicate that the exact thermal boundary conditions are important to get precise film growth rate prediction since film deposition is mainly controlled by the temperature dependent diffusion. The results also show that thermal diffusion plays an important role in the upstream region.

  • PDF

Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature

  • Moradi, S.;Mansouri, Mohammad Hassan
    • Steel and Composite Structures
    • /
    • v.12 no.2
    • /
    • pp.129-147
    • /
    • 2012
  • In this paper, the thermal buckling analysis of rectangular composite laminated plates is investigated using the Differential Quadrature (DQ) method. The composite plate is subjected to a uniform temperature distribution and arbitrary boundary conditions. The analysis takes place in two stages. First, pre-buckling forces due to a temperature rise are determined by using a membrane solution. In the second stage, the critical temperature is predicted based on the first-order shear deformation theory. To verify the accuracy of the method, several case studies were used and the numerical results were compared with those of other published literatures. Moreover, the effects of several parameters such as aspect ratio, fiber orientation, modulus ratio, and various boundary conditions on the critical temperature were examined. The results confirm the efficiency and accuracy of the DQ method in dealing with this class of engineering problems.

Thermal Stress Analysis for Life Prediction of Power Plant Turbine Rotor (발전용 터빈 로우터의 수명예측을 위한 열응력 해석)

  • 임종순;허승진;이규봉;유영면
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.276-287
    • /
    • 1990
  • In this paper research result of transient thermal stress analysis of power plant turbine rotors for life prediction under severs operating conditions is presented. Galerkin's recurrence scheme is used for numerical solution of discretized FEM equation of transient heat conduction equation. Boundary conditions for the equation and operating conditions are intensively investigated for accurate life prediction of turbine rotors in operation. A computer program for on-site application is developed and tested. Distribution of thermal stress in turbine rotors during various operating condition is analyzed with the program and it is found that the peak thermal stress appears during cold stage conditions at the first stage of high pressure rotors.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF

Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate

  • Salari, Erfan;Ashoori, Alireza;Vanini, Seyed Ali Sadough
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • This research is aimed at studying the asymmetric thermal buckling of porous functionally graded (FG) annular nanoplates resting on an elastic substrate which are made of two different sets of porous distribution, based on nonlocal elasticity theory. Porosity-dependent properties of inhomogeneous nanoplates are supposed to vary through the thickness direction and are defined via a modified power law function in which the porosities with even and uneven type are approximated. In this model, three types of thermal loading, i.e., uniform temperature rise, linear temperature distribution and heat conduction across the thickness direction are considered. Based on Hamilton's principle and the adjacent equilibrium criterion, the stability equations of nanoporous annular plates on elastic substrate are obtained. Afterwards, an analytical solution procedure is established to achieve the critical buckling temperatures of annular nanoplates with porosities under different loading conditions. Detailed numerical studies are performed to demonstrate the influences of the porosity volume fraction, various thermal loading, material gradation, nonlocal parameter for higher modes, elastic substrate coefficients and geometrical dimensions on the critical buckling temperatures of a nanoporous annular plate. Also, it is discussed that because of present of thermal moment at the boundary conditions, porous nanoplate with simply supported boundary condition doesn't buckle.

Determination of thermal Stress Intensity Factors for General Cusp-Crack Shaped Rigid Inclusion (일반 형상의 커프스형 강체균열에 대한 열응력세기계수 결정)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1216-1220
    • /
    • 1992
  • In case that a general cusp-crack shaped inclusion expressed in a polynominal form of conformal mapping function exists in a two dimensional elastic body under uniform heat flow, the complex potential and thermal stress intensity factors are derived. Two thermal boundary conditions are considered, one an insulated rigid inclusion and the other a rigid inclusion with fixed boundary temperature. The previous solutions of the thermal stress intensity factors for symmetrical airfoil and lip type rigid inclusions are obtained from the general solution of the thermal stress intensity factors.