• 제목/요약/키워드: Thermal Barrier

검색결과 722건 처리시간 0.028초

가스버너 열충격에 의한 NiCr/ZrO2계 경사기능재의 열적 파괴특성 (Fracture Characteristics of NiCr/ZrO2 Functionally Graded Material by Gas Burner Thermal Shock)

  • 송준희
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.247-252
    • /
    • 2006
  • Joining Yittria Stabilized Zirconia (YSZ) to NiCr metal was fabricated using YSZ/NiCr Functionally Graded Materials (FGM) Interlayer by hot pressing process. Microscopic observations demonstrate that the composition and microstructure of YSZ/NiCr FGM distribute gradually in stepwise way, eliminating the macroscopic ceramic/metal interface such as that in traditional ceramic/metal joint. The thermal characteristics of this YSZ/FGM/NiCr joint were studied by thermal shock testing and therml barrier testing. Thermal shock test was conducted by gas burner rig. Acoustic Emission (AE) monitoring was performed to analyze the microfracture behavior during the thermal shock test. It could be confirmed that FGM was the excellent performance of thermal shock/barrier resistance at above $1000^{\circ}C$.

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon;Kim, Tae Woo;Lee, Kee Sung;Kim, Chul
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.452-460
    • /
    • 2018
  • This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

가스터빈 블레이드 열차폐 코팅의 접착강도 평가 (Evaluation of a Bond Strength of Thermal Barrier Coating for Gas Turbine Blade)

  • 김대진;이동훈;김형익;김문영;양성호;박상열;구재민;석창성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.195-199
    • /
    • 2007
  • In this study, bond strength tests were performed for the thermal barrier coating applied to the 1st stage turbine blade. After the tests, the specimens were cut and the locations of failure were observed by using optical microscope. The influence of heat treatment on bond strength of a bond coating and the difference among the three types of bond coatings are treated.

  • PDF

평판형 유전체 장벽 방전 반응기에서 충진물질에 따른 아세토나이트릴의 분해 특성 (Decomposition of Acetonitrile Using a Planar Type Dielectric Barrier Discharge Reactor Packed with Adsorption and Catalyst Materials)

  • 김관태;송영훈;김석준
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.157-165
    • /
    • 2003
  • A combined process of non-thermal plasma and catalytic technique has been investigated to treat $CH_3$CN gas in the atmosphere. A planar type dielectric barrier discharge (DBD) reactor has been used to generate the non-thermal plasma that produces various chemically active species, such as O, N, OH, $O_3$, ion, electrons, etc. Several different types of the beads. which are Molecular Sieve (MS) 5A, MS 13X, Pt/alumina beads, are packed into the DBD reactor, and have been tested to characterize the effects of adsorption and catalytic process on treating the $CH_3$CN gas in the DBD reactor. The test results showed that the operating power consumption and the amounts of the by-products of the non-thermal plasma process can be reduced by the assistance of the adsorption and catalytic process.

Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석 (Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide)

  • 장중철;최성철
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.479-485
    • /
    • 2006
  • The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

Numerical simulation of relation between interface topography and residual stress in thermal barrier coatings

  • Yao, Guo-Feng;Ma, Hong-Mei;Zhang, Lin-Wen
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.423-431
    • /
    • 2008
  • With respect to thermal barrier coating, the analysis of interface cohesion and residual stress is important to the life of TBC from mechanical view point. Up to now, there is not a model of describing interface cohesion. In the paper, we give a simple model of computing residual stress and study the residual stress of TBC with ANSYS. The distribution of the residual stress in different interface topography and the relationship between the residual stress and the interface topography dimension are presented.

진공포장한 육류제품의 열가공처리와 포장재질에 따른 저장중의 미생물성장 효과 (Effect of Thermal Processing and Packaging Materials on Microbial Growth of Vacuum Packaged a Meat Product during Storage)

  • 이종현
    • 한국포장학회지
    • /
    • 제4권1호
    • /
    • pp.33-40
    • /
    • 1997
  • The microbial growth of fresh, vacuum packaged, cook-in-bag uncured beef patties was determined in two film structures, a commercial (PE/EVOH), and super barrier ($SiO_2$ coated polyester) material. Packaged samples were cooked to internal temperature of 71 and $82^{\circ}C$ for 30 minutes, and stored in temperature abused ($23{\pm}2^{\circ}C$) and refrigerated storage ($4-6^{\circ}C$). Barrier properties had a significant effect (p<0.001) on aerobic and mesophilic growth in the abused condition. Cooking temperatures had a statistically significant effect (p<0.05) on aerobic growth in the refrigerated condition. The growth of anaerobes and psychrophiles were not significantly effected by either variables. Storage times had the most significant effect (p<0.001) for all groups of microorganisms. The physical properties of the commercial film (strength, thickness, and shrinkage) were changed after exposure to thermal treatment, while the super barrier package had actually no change.

  • PDF

Effect of coating thickness on contact fatigue and wear behavior of thermal barrier coatings

  • Lee, Dong Heon;Jang, Bin;Kim, Chul;Lee, Kee Sung
    • Journal of Ceramic Processing Research
    • /
    • 제20권5호
    • /
    • pp.499-504
    • /
    • 2019
  • The effect of coating thickness on the contact fatigue and wear of thermal barrier coatings (TBCs) are investigated in this study. The same bondcoat material thickness (250 ㎛) are used for each sample, which allows the effect of the coating thickness of the topcoat to be investigated. TBCs with different coating thicknesses (200, 400, and 600 ㎛) are prepared by changing processing parameters such as the feeding rate of the feedstock, spraying speed, and spraying distance during APS(air plasma spray) coating. The damage size on the surface are strongly affected by the coating thickness effect. Although the damage size from contact fatigue using a spherical indenter diminish at a TBC of 200 ㎛, a high wear resistance such as a low friction coefficient and little mass change are found at a TBC of 600 ㎛. These results indicate that the coating thickness strongly affects the mechanical behavior in TBCs during gas turbine operation.

5층열장벽 피막의 고온 물성에 관한연구 (A Syudy on the High Temprerties of the 5Layer Functionally Gradient Thermal Barrier Coating)

  • 한주철;정철;송요승;윤종구;노병호;이구현
    • 한국표면공학회지
    • /
    • 제31권1호
    • /
    • pp.12-23
    • /
    • 1998
  • The Thermal Barrier Coating(TBC) has been used to improve the heat barrier and tribological properties of the aircraft engine and the automobile engine in high temperature. Especially, the high temperature tribological propertied of the cylinder haed and the piston crown of diesel engine was emphasized. Therefore, the purpose of this work was to evaluate the microstructure, tribological propeer in high tempearmal shock resistance and bonding strength of five layer functionally gradient TBC for the applications. The five layerwere composed with 100% ceramic insulating later, 75(ceramic):25 (metal) layer, 50:50 layer, 25:75 layer and 100% metal bonding layer to redude the thermal stress. the YSL and MSL poweders were the insulation ceramics powers. The NiCrAly, Inconel625 and SUS powders were the bonding and mixingg powders for plasma spray process. According to the result of high temperature wear test, the wera resistance of YSZ/NiCrAlY siytem was most out standing at 600 and $800^{\circ}C$. At $400^{\circ}C$, the wear resistance of YSZ/Inconel system was better than others. Wear volume at other temperature because of the low temperature degration of zirconia. The thermal shock mechanism of 5 later is the vertical crack gegration in insulating layer. this means that the initial cracks were generated in the top layer, and then developed into the composite layers during thermal shock test. Finally, these cracks werereached to the interface of coating and substrate and also, these vertioal cracks join with the horizontal cracks of the each layers. The bonding strength of YSZ/NiCrAlY and YSZ/Inconel 5 layer system is better than other 5layer systems. The theramal shock resistance of thermal barrier coating s with 5 layer system is better than that of 3 layers and 2 layers.

  • PDF

NUMERICAL APPROACH TO MICROSTRUCTURAL CHARACTERIZATIONS FOR DENSE AND POROUS THERMAL BARRIER COATINGS

  • Kim, Seok-Chan;Go, Jae-Gwi;Jung, Yeon-Gil;Paik, Un-Gyu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권3호
    • /
    • pp.223-231
    • /
    • 2011
  • During spray coating, especially in an air plasma spray (APS), pores, cracks, and splat boundaries are developed and those factors exert influence on thermomechanical properties such as elastic modulus, thermal conductivity, and coefficient of thermal expansion. Moreover, the thermo mechanical properties are crucial elements to determine the thermoelastic characteristics, for instance, temperature distribution, displacements, and stresses. Two types of thermal barrier coating (TBC) model, the dense and porous microstructures, are taken into account for the analysis of microstructural characterizations. $TriplexPro^{TM}$-200 system was applied to prepare TBC samples, and the METECO 204 C-NS powder is adopted for the relatively porous microstructure and METECO 204 NS powder for the dense microstructure in the top coat of TBCs. Governing partial differential equations were derived based on the thermoelastic theory and approximate estimates for the thermoelastic characteristics were obtained using a finite volume method for the governing equations.