• 제목/요약/키워드: Thermal Analogy Model

검색결과 22건 처리시간 0.025초

축소 확대 노즐의 열전달 해석을 위한 열전달 계수 계산 및 검증 (Comparative Evaluation on the Deriving Method of the Heat Transfer Coefficient of the C-D Nozzle)

  • 노태원;노태성;이형진;이현섭;유필훈
    • 한국추진공학회지
    • /
    • 제26권2호
    • /
    • pp.1-11
    • /
    • 2022
  • 일반적인 축소 확대형 초음속 노즐에 대한 열해석에서 경계조건으로 사용되는 벽면의 열전달 계수는 노즐 전체의 열해석 정확도에 영향을 미친다. 이에 많은 열전달계수 도출 방법이 제안되어 왔으며, 본 연구에서는 각각의 기법들을 실제 실험 조건에서 열전달 계수를 계산하고 비교하고자 하였다. 이를 위해 기 수행된 벽면 등온 노즐의 열전달실험에 대해 이론 기반의 analogy 기법과 반경험식, 유체전산해석을 통해 열전달 계수를 도출하고 실험결과와 비교하였다. 해석 결과는 반경험식들은 전반적으로 다른 방법에 비해 대류 열전달 계수를 과도하게 예측하고, Prandtl-Taylor analogy 기법과 k-ω SST 모델을 적용한 전산해석 결과가 실험결과와 비교적 잘 일치하는 경향성을 보였다.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

Parameterized Simulation Program with Integrated Circuit Emphasis Modeling of Two-level Microbolometer

  • Han, Seung-Oh;Chun, Chang-Hwan;Han, Chang-Suk;Park, Seung-Man
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.270-274
    • /
    • 2011
  • This paper presents a parameterized simulation program with integrated circuit emphasis (SPICE) model of a two-level microbolometer based on negative-temperature-coefficient thin films, such as vanadium oxide or amorphous silicon. The proposed modeling begins from the electric-thermal analogy and is realized on the SPICE modeling environment. The model consists of parametric components whose parameters are material properties and physical dimensions, and can be used for the fast design study, as well as for the co-design with the readout integrated circuit. The developed model was verified by comparing the obtained results with those from finite element method simulations for three design cases. The thermal conductance and the thermal capacity, key performance parameters of a microbolometer, showed the average difference of only 4.77% and 8.65%, respectively.

New DTR Estimation Method Without Measured Solar and Wind Data

  • Ying, Zhan-Feng;Chen, Yuan-Sheng;Feng, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.576-585
    • /
    • 2017
  • Dynamic thermal rating (DTR) of overhead transmission lines can provide a significant increase in transmission capacity compared to the static thermal rating. However, the DTR are usually estimated by the traditional thermal model of overhead conductor that is highly dependent on the solar, wind speed and wind direction data. Consequently, the estimated DTR would be unreliable and the safety of transmission lines would be reduced when the solar and wind sensors are out of function. To address this issue, this study proposed a novel thermal model of overhead conductor based on the thermal-electric analogy theory and Markov chain. Using this thermal model, the random variation of conductor temperature can be simulated with any specific current level and ambient temperature, even if the solar and wind sensors are out of function or uninstalled. On this basis, an estimation method was proposed to determine the DTR in the form of probability. The laboratory experiments prove that the proposed method can estimate the DTR reliably without measured solar and wind data.

Creep of concrete at variable stresses and heating

  • Klovanych, Sergei
    • Computers and Concrete
    • /
    • 제16권6호
    • /
    • pp.897-908
    • /
    • 2015
  • This article gives analytical dependences for creep of concrete at heating, taking into account conditions of its drying. These dependences are based on the standard nonlinear theory of creep of concrete at a normal temperature and temperature-time analogy. For the description of creep at various stresses and temperatures the principle of superposition are used. All stages of model's creation are confirmed by the existing experimental data. Calculation examples are given.

고온 초전도 자속흐름 트랜지스터에 적용된 전자냉각 특성 시뮬레이션 (Characteristics Simulation of Electronics Cooling for a High-Temperature Superconducting Flux Flow Transistor Circuit)

  • 고석철;강형곤;임성훈;두호익;이종화;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.1063-1066
    • /
    • 2002
  • An equivalent circuit for the superconductor flux flow transistor(SFFT) was combined with high temperature cooling device, based on the analogy between thermal and electrical variables using the high-temperature superconductor(HTS), is proposed. The device is composed of parallel weak links with a nearby magnetic control line. A model has been developed that is based on solving the equation of motion of Abrikosov vortices subject to Lorentz viscous and pinning forces as well as magnetic surface barriers. The use of thermal models the global performance of thermal cooling circuit and signal system to be checked by using electrical circuit analysis programs such as SPICE.

  • PDF

고속 비행체 공기흡입관 구조설계를 위한 효율적 유체-열 통합해석 연구 (An Efficient Fluid-Thermal Integrated Analysis for Air-Intake Structure Design of a High Speed Air Vehicle)

  • 전형근;류동국;이재우;김상호
    • 한국항공운항학회지
    • /
    • 제23권3호
    • /
    • pp.8-17
    • /
    • 2015
  • In this research, low fidelity air/heat load analysis was conducted for the intake of high speed vehicle. For air/heat load calculations, aerodynamic properties at the surface and the boundary layer edge were estimated using Taylor-Maccoll equation for conical flow, shockwave relation and Prandtl-Meyer expansion equation for internal and external flow. Couette flow assumption and Reynolds analogy were used in order to calculate convective heat transfer coefficient. In order to calculate skin friction coefficient for heat transfer coefficient analysis, Van Driest method II and Reference Enthalpy method were considered. An axis symmetric SCRAMJET model was selected as a reference configuration for verifying the proper implementation of the present method. Comparison of the results using the present method and Computational Fluid Dynamic analysis showed that the present method is valuable for efficiently providing pressure and heat loads for air-intake structure design of the high speed air vehicle.

로타리 킬른형 건조로 열유동 해석에 관한 연구 (Study on CFD Analysis of Dying Plant with Rotary Kiln Type for Eco-Industrial Park)

  • 강우정;황준
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.61-68
    • /
    • 2009
  • This paper presents the numerical analysis of process of sludge drying to know the characteristics of design parameters and develop the new process plant. Finite volume method and $k-{\varepsilon}$ turbulence model were used to analogy the sludge drying furnace. It has been attempted to perform the disposal of sewage sludge such as simple reclaiming and dumping in sea and incineration. Currently, these methods are restricted by national or international government regulations. The drying process is adopted as an effective method for sewage sludge treatment. However sewage sludge makes it difficult to treat with a large volume at the real drying process plant because of its own complicated physical, chemical, and thermal properties. The final design value of moisture content with 10% of the dried sludge can be obtained through the simulated outputs in this study.

  • PDF

시공간 정보기반 산림 생태계의 기후변화 취약성 평가 (Vulnerability Assessment for Forest Ecosystem to Climate Change Based on Spatio-temporal Information)

  • 변정연;이우균;최성호;오수현;유성진;권태성;성주한;우재욱
    • 대한원격탐사학회지
    • /
    • 제28권1호
    • /
    • pp.159-169
    • /
    • 2012
  • 본 연구의 목적은 산림생태계 분포 모델인 HyTAG모델(Hydrological and Thermal Analogy Group)과 기능 모델인 MC1 모델(MAPSS-CENTURY 1) 그리고 사회 환경적 지표를 이용하여 기후변화가 한반도 산림생태계에 미치는 영향을 파악하는 것이다. HyTAG의 식생유형분포 변화 빈도와 방향으로부터 산림식생의 민감성과 적응성을 정량화하였다. 또한 MC1으로부터 추정되는 순일차생산량 및 토양탄소저장량의 변이 및 경향으로부터 산림기능의 민감성과 적응성을 정량화하였다. 사회 환경적 지표로는 재정자주도 또는 산림관련 공무원 수 등과 같은 통계자료를 포함하였다. 모든 지표들을 정규화하고 취약성 평가식에 적용하여 취약성 결과를 도출하였다. 취약성 평가의 시간적 범위는 현재(1971-2000)와 미래(2021-2050)로 구분하였다. 국가 기후변화 정책의 우선순위를 판단하기 위해 지표 별 공간 분포 지도를 작성하고 행정구역간의 취약성을 비교한 결과, 지역별로 취약성의 차이가 있는 것으로 나타났다. 이러한 취약성 차이는 적응능력에 따라 가장 크게 좌우되는 것으로 판단되었다. 본 연구의 취약성 평가 방법 및 결과는 산림 경영적 측면에서 의사결정 시스템 개발과 기후변화에 대한 적응정책 수립의 판단 자료로 활용될 것이다.

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.