• 제목/요약/키워드: Thermal Ablation

검색결과 174건 처리시간 0.035초

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of Carbon Fabrics (하이브리드화에 의한 탄소 직물 복합재료의 역학적 특성 및 열적 특성)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Composites Research
    • /
    • 제20권4호
    • /
    • pp.18-24
    • /
    • 2007
  • The mechanical and thermal properties of PAN-based/rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties including tensile and interlaminar shear strengths were improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate and insulation index were determined through the torch test. Continuous rayon-based carbon fabrics composite indicated relatively low ablation resistant property. The thermal conductivity of hybrid composite of spun PAN-based/continuous rayon-based carbon fabrics is lower than that of the continuous PAN-based carbon fabrics composite.

A Study on Thermomechanical Analysis of Laser Ablation on Cr thin film (크롬박막의 레이저 어블레이션에서 열적.기계적 해석에 관한 연구)

  • 윤경구;장원석;이성국;김재구;나석주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.914-917
    • /
    • 2001
  • Single-shot laser damage of thin Cr films on glass substrates has been studied to understand the cracking and peeling-off mechanism. A numerical model is developed for the calculation of transient heat transfer and thermal stresses in Cr films during excimer laser irradiation and cooling, the transient temperature, and the stress-strain fields are analyzed by using a three-dimensional finite-element model of heat flow. According to the numerical analysis for the experimentally determined cracking and peeling-off conditions, cracking is found to be the result of the tensile brittle fracture due to the excessive thermal stresses formed during the cooling process, while peeling-off is found to be the combined result of films bulging from the softened glass surface at higher temperature and the tensile brittle fracture during the cooling process.

  • PDF

Modified Monopole Antenna for Microwave Thermal Therapy (마이크로파 에너지를 이용한 열 치료용 링-모노폴 안테나)

  • 문명호;곽상태
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 한국전자파학회 2001년도 종합학술발표회 논문집 Vol.11 No.1
    • /
    • pp.86-90
    • /
    • 2001
  • Modified coaxial-slot antenna for minimally invasive microwave thermal therapy for liver tumor is studied in this paper. Minimally invasive microwave antenna in medicine are applied for hyperthermia for medical treatment for cancer, cardiac catheter ablation for ventricular arrhythmias treatments, microwave treatment of Benign prostatic hypertrophy, and so on. Microwave hyperthermal ablation for liver tumors is expected for enthusiasts as an alternative to curative surgical resection. Tumors have to heated up to 60 degree C to coagulate .cancer cells but less than 100 degree C to avoid evaporation. Temperature dependence of properties of the tissues should be considered for wide range of treatment. Electrical properties of liver tissue were measured for different temperatures. SAR distribution around the antenna into the liver are simulated using Remcom's XFDTD.

  • PDF

Optical Emission Studies of a Plume Produced by Laser Ablation of a Graphite Target in a Nitrogen Atmosphere

  • Park, Hye-Sun;Nam, Sang-Hwan;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.620-624
    • /
    • 2004
  • Optical emission studies were performed to investigate thermal and dynamical properties of a plume produced by laser ablation of a graphite target in a nitrogen atmosphere. Experimental spectra of $C_2(d^3{\Pi}_g{\to}a^3{\Pi}_u$, ${\Delta}_V$=1) and CN ($B^2{\Sigma}^+{\to}X^2{\Sigma}^+,{\Delta}_V=0)$ were simulated to obtain the vibrational and rotational temperatures of the electronically excited species at various laser fluences and distances from the target. The spectroscopic temperatures of both molecules were found to be nearly independent of the laser fluence. The temperature of CN molecules was peaked in the middle of the plume while that of $C_2$decreased with increase in the distance. At a given distance, the temperature of CN molecules was clearly higher than that of $C_2$.

CONTRIBUTIONS OF THE VULCANO EXPERIMENTAL PROGRAMME TO THE UNDERSTANDING OF MCCI PHENOMENA

  • Christophe, Journeau;Piluso, Pascal;Correggio, Patricia;Ferry, Lionel;Fritz, Gerald;Haquet, Jean Francois;Monerris, Jose;Ruggieri, Jean-Michel;Sanchez-Brusset, Mathieu;Parga, Clemente
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.261-272
    • /
    • 2012
  • Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.

Numerical Analysis of Switching Arcs with the Ablation of PTFE Nozzles (PTFE 노즐로부터 발생하는 용삭가스를 고려한 스위칭 아크 해석)

  • Lee, Won-Ho;Kim, Hong-Kyu;Lee, Jong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1536-1537
    • /
    • 2011
  • The high-voltage circuit breaker plays an important role in the electrical system because there has been a need for suitable switching devices capable of initiating and interrupting the flow of the electric fault current. It continues as the contacts recede from each other and as the newly created gap is bridged by a plasma. The arc plasma happens inside the insulation nozzle of SF6 self-blast interrupter which is newly developed as the next-generation switching principle. The ablation of PTFE nozzle is caused by this high temperature medium, the PTFE vapor from the nozzle surfaces flows toward the outlets and the pressure chamber. The vapor makes the pressure of the chamber increased by heat and mass transfer from the arcing zone. Because the rate of ablation depends on the magnitude of applied current, it decreases when the current goes to zero. The compressed gas inside the chamber flows reversely toward the arc plasma during this moment. According to this principle, the arc can be cooled down and the fault current can be interrupted successfully. In this study, we calculate arc plasmas and thermal-flow characteristics caused by fault current interruption inside a SF6 self-blast interrupter, and to investigate the effect of PTFE ablation on the whole arcing history.

  • PDF

Femtosecond Pulsed Laser Ablation of OLED Shadow Mask Invar Alloy (펨토초 레이저를 이용한 OLED 용 Shadow Mask Invar 합금의 어블레이션)

  • Chung, Il-Young;Kang, Kyung-Ho;Kim, Jae-Do;Sohn, Ik-Bu;Noh, Young-Chul;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제24권12호
    • /
    • pp.50-56
    • /
    • 2007
  • Femtosecond laser ablation of the Invar alloy and hole drilling for a shadow mask are studied. We used a regenerative amplified Ti-sapphire laser with a 1kHz repetition rate, 184fs pulse duration and 785nm wavelength. Femtosecond laser pulse was irradiated on the Invar alloy with air blowing at the condition of various laser peak power. An ablation characteristic of the Invar alloy was appeared non-linear at $125J/cm^2$ of energy fluence. For the application to a shadow mask, the hole drilling of the Invar alloy with the cross section of a trapezoidal shape was investigated. The ablated micro-holes were characterized using an atomic force microscopy(AFM). The optimal condition of hole pattern f3r a shadow mask was $4\;{\mu}m$ z-axis feed rate, 0.2mm/s circular velocity, $26.4{\mu}J$ laser peak power. With the optimal processing condition, the fine circular hole shape without burr and thermal damage was achieved. Using the femtoseocond laser system, it demonstrates excellent tool for the Invar alloy micro-hole drilling without heat effects and poor edge.

Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode (외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식)

  • Kwon, Y.H.;Frederickson, C.J.;Motamedi, M.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF

Neural Ablation and Regeneration in Pain Practice

  • Choi, Eun Ji;Choi, Yun Mi;Jang, Eun Jung;Kim, Ju Yeon;Kim, Tae Kyun;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • 제29권1호
    • /
    • pp.3-11
    • /
    • 2016
  • A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration.