• Title/Summary/Keyword: Thermal $NO_x$

Search Result 329, Processing Time 0.028 seconds

High Temperature Desulfurization over ZnO-Fe2O3 Mixed Metal Oxide Sorbent (ZnO-Fe2O3 복합금속 산화물을 이용한 고온에서의 황화수소 제거에 관한 연구)

  • Lee, Jae-Bok;Lee, Young-Soo;Yoo, Kyong-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 1994
  • Introduction : Recently, water and environmental pollution becomes serious social problem and high technology makes this pollution accelerate. Hydrogen sulfide, the main subject of our research, is one of the most dangerous air pollutant like SO$_x$ and NO$_x$. The major contaminant in coal gasification is H$_2$S, which is very toxic, hazardous and extremely corrosive. Therefore, control of hydrogen sulfide to a safe level is essential. Although commercial desulfurization process called liquid scrubbing is effective for removal of H$_2$S, it has drawbacks, the loss of sensible heat of the gas and costly wastewater treatment. Many investigations are carried out about high-temperature removal ol H$_2$S in hot coal-derived gas using metal oxide or mixed metal qxide sorbents. It was reported that ZnO was very effective sorbent for H2S removal, but it has big flaw to vaporize elemental zinc above 600\ulcorner \ulcorner As alternative, metal oxides such as CaO, $Fe_2O_3$, TiO$_2$ and CuO were added to ZnO. Especially, different results are reported for $Fe_2O_3$ additive. Tamhankar et al. reported SiO$_2$ with 45 wt% $Fe_2O_3$ sorbent is favorable for removal of H$_2$S and regeneration.

  • PDF

Physicochemical Properties of Cross-linked and Partially Enzymatically Hydrolyzed (CLE) Waxy Rice Starch (가교화 후 효소처리(CLE) 찹쌀 전분의 물리화학적 특성)

  • Yu, Chul;Kim, Sung-Woo;Kim, Chong-Tai;Choi, Sung-Won;Kim, Byung-Yong;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.290-296
    • /
    • 2008
  • This study examined the physicochemical properties of chemically and enzymatically cross-modified waxy rice starches. The waxy rice starch was cross-linked using phosphorous oxychloride, and then partially hydrolyzed with four commercial ${\alpha}$-amylases (Fungamyl, Termamyl, Liquozyme, Kleistase). Swelling power and the moisture sorption isotherm did not change with cross-modification. Two cross-modified waxy rice starches (hydrolyzed with Termamyl and Liquozyme) showed higher solubilities than native starch and the two other cross-modified starches (hydrolyzed with Fungamyl and Kleistase). In terms of RVA characteristics, the two cross-modified waxy rice starches hydrolyzed with Termamyl and Liquozyme, respectively, had lower peak viscosity, holding strength, and final viscosity than the native starch. However, the two starches hydrolyzed with Fungamyl and Kleistase, respectively, revealed higher peak viscosity, holding strength, and final viscosity than the native starch. No differences were displayed in the X-ray diffraction patterns and DSC thermal characteristics of the cross-modified waxy rice starch as compared to both the native and cross-linked starches, indicating that cross-linking and enzymatic hydrolysis occurred in the amorphous region and did not alter the crystalline region.

Effect of the Starch Content on the Silicate Dispersion and Rheological Properties of Polypropylene/Starch/Silicate Composites (폴리프로필렌/전분/실리케이트 복합체의 실리케이트 분산 및 유변학적특성에 미치는 전분 함량의 영향)

  • Kim, Youn Cheol;Lee, Chang-Young
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.106-111
    • /
    • 2008
  • Polypropylene (PP)/corn starch master batch (starch-MB)/silicate composites with different corn starch compositions of 10, 20, 30, 40 and 50 were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The content of silicate was fixed at 5 wt%. The composition of starch-MB in composites was confirmed by the existence of hydroxy group and peak intensity in fourier-transform-infrared (FT-IR) spectrum. The thermal properties of the PP/starch-MB/silicate composites were investigated by differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). There was no district change in melting temperature, and TGA curve indicates a decrease in degradation temperature with the increase of starch-MB content. The silicate dispersion of the composites was measured by X-ray diffraction (XRD) and transmission electron microscope (TEM). The degree of silicate dispersion in PP/starch-MB/silicate composites depended on the content of starch-MB. There was detectable change in d-spacing and peak intensity of the composite when the content of starch-MB was higher than 20 wt%. The rheological behavior of the composites was explained by both shear thinning effect and elastic property with the starch-MB amount. These effects were remarkable when the content of starch-MB was higher than 20 wt%. These were confirmed by an oscillatory viscometer at $200^{\circ}C$.

Rheological Properties and Foaming Behaviors of Modified PP/Nano-filler Composites (개질 폴리프로필렌/나노필러 복합체의 유변학적 특성 및 발포거동)

  • Yoon, Kyung Hwa;Lee, Jong Won;Kim, Youn Cheol
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.494-499
    • /
    • 2013
  • Modified polypropylene (m-PP) was fabricated by furfuryl sulphide (FS) as branching agent and m-PP/nano-filler composites were prepared with silicate and multi-walled carbon nanotube (MWCNT), using a twin screw extruder. The chemical structures and thermal properties of the m-PP were investigated by FTIR and DSC. The chemical structure of the m-PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no district change in melting temperature in case of m-PP, but a certain increase in crystallization temperature was notified and the increase was in the range of $10-20^{\circ}C$. The rheological properties, filler dispersion and foaming behaviors of the m-PP/nano-filler composites were investigated by dynamic rheometer, X-ray diffractometer (XRD) and scanning/transmission electron microscope (SEM/TEM). m-PP/nano-filler composites showed a high complex viscosity at a low frequency, an increase in melt elasticity, and a high shear thinning effect. Compared to pure PP, m-PP and m-PP/nano-filler composites were sufficient to enhance the foaming behavior.

Preparation of Sulfobetaine Chitosan, Silk Blended Films, and Their Properties (설포베타인 키토산의 실크 블렌드 필름의 제조 및 그들의 성질)

  • Koo, Ja-Sung;Cha, Jae-Ryung;Oh, Se-Heang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • Water-soluble sulfobetaine chitosan (SCs) was prepared for a blending film with Bombyx mori silk fibroin (SF) by reacting chitosan with 1,3-propanesultone. A series of SF/SCs blended films were successfully prepared by mixing aqueous solutions of B. mori SF and SCs. The SF/SCs blended films were examined through spectroscopic and thermal analysis to determine the morphological changes of SF in the SCs. The effects of the SF/SCs blend ratios on physical and mechanical properties were investigated to discover the feasibility of using these films as biomedical materials such as artificial skin and wound dressing. X-ray analysis showed good compatibility between the two biopolymers. The in vitro degradation behavior of the SF/SCs blended films was systematically investigated for up to 8 weeks in phosphate buffered saline solution at $37^{\circ}C$ and showed a mass loss of 46.4% after 8 weeks. All films showed no cytotoxicity by MC3T3-E1 assay. After 3 days of culture, the relative cell number on all the SF/SCs films was slightly lower than that of an optimized tissue culture plastic.

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF

Physicochemical Properties of Cross-linked Waxy Rice Starches and Its Application to Yukwa (가교화 찹쌀전분의 물리화학적 성질 및 유과제조 특성)

  • Yu, Chul;Choi, Hyun-Wook;Kim, Chong-Tai;Ahn, Soon-Cheol;Choi, Sung-Won;Kim, Byung-Yong;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.534-540
    • /
    • 2007
  • In this study, waxy rice starch was chemically modified using phosphorous oxychloride ($POCl_3$, 0.002-0.008%). Then the physicochemical properties of resulting cross-linked waxy rice starches were investigated in order to reduce the steeping time of Yukwa (a Korean oil-puffed rice snack) processing. The swelling powers of the cross-linked waxy rice starch samples were higher than the native waxy rice starch at temperatures above $60^{\circ}C$, and their increases were proportional to the $POCl_3$, concentration. The solubility of the cross-linked waxy rice starch was lower (1.6-3.4%) than the native waxy rice starch (2.7-6.1%). However, the moisture sorption isotherm of the cross-linked waxy rice starch was not significantly different from the native waxy rice starch. The rapid visco analyze. (RVA) pasting temperatures $(65.4-67^{\circ}C)$ of the cross-linked waxy rice starch were lower than those of the native starch $(67^{\circ}C)$. The RVA peak viscosities (287-337 RVU) of the cross-linked waxy rice starch were higher than that of native starch (179 rapid visco units (RVU)), and increased with increasing $POCl_3$ concentration. For the differential scornning calorimeter thermal characteristics, although Tc shifted toward higher temperatures with cross-linking, the To, Tp, and amylopectiin melting enthalpy of the cross-linked waxy rice starch showed no differences compared to the native waxy rice starch. The X-ray diffraction patterns of both the native and cross-linked waxy rice starches showed typical A-type crystal patterns, suggesting that cross-linking mainly occurs in the amorphous regions of starch granules. Therefore, the cross-linking reaction did not change the crystalline region, but altered the amorphous region of the waxy rice starch molecules, resulting in changes of solubility and RVA pasting properties in the cross-linked waxy rice starch. In summary, since cross-linked waxy rice starch has a high puffing efficiency and no browning reaction, it may be applicable for Yukwa processing without a long steeping process.

Design Anamorphic Lens Thermal Optical System that Focal Length Ratio is 3:1 (초점거리 비가 3:1인 아나모픽 렌즈 열상 광학계 설계)

  • Kim, Se-Jin;Ko, Jung-Hui;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.409-415
    • /
    • 2011
  • Purpose: To design applied anamorphic lens that focal length ratio is 3:1 optical system to improve detecting distance. Methods: We defined a boundary condition as $50^{\circ}{\sim}60^{\circ}$ for viewing angle, horizontal direction 36mm, vertical direction 12 mm for focal length, f-number 4, $15{\mu}m{\times}15{\mu}m$ for pixel size and limit resolution 25% in 33l p/mm. Si, ZnS and ZnSe as a materials were used and 4.8 ${\mu}m$, 4.2 ${\mu}m$, 3.7 ${\mu}m$ as a wavelength were set. optical performance with detection distance, narcissus and athermalization in designed camera were analyzed. Results: F-number 4, y direction 12 mm and x direction 36 mm for focal length of the thermal optical system were satisfied. Total length of the system was 76 mm so that an overall volume of the system was reduced. Astigmatism and spherical aberration was within ${\pm}$0.10 which was less than 2 pixel size. Distortion was within 10% so there was no matter to use as a thermal optical camera. MTF performance for the system was over 25% from 33l p/mm to full field so it was satisfied with the boundary condition. Designed optical system was able to detect up to 2.9 km and reduce a diffused image by decreasing a narcissus value from all surfaces except the 4th surface. From sensitivity analysis, MTF resolution was increased on changing temperature with the 5th lens which was assumed as compensation. Conclusions: Designed optical system which used anamorphic lens was satisfied with boundary condition. an increasing resolution with temperature, longer detecting distance and decreasing of narcissus were verified.

Property of Nickel Silicides with 10 nm-thick Ni/Amorphous Silicon Layers using Low Temperature Process (10 nm-Ni 층과 비정질 실리콘층으로 제조된 저온공정 나노급 니켈실리사이드의 물성 변화)

  • Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.322-329
    • /
    • 2009
  • 60 nm- and 20 nm-thick hydrogenated amorphous silicon (a-Si:H) layers were deposited on 200 nm $SiO_2/Si$ substrates using ICP-CVD (inductively coupled plasma chemical vapor deposition). A 10 nm-Ni layer was then deposited by e-beam evaporation. Finally, 10 nm-Ni/60 nm a-Si:H/200 nm-$SiO_2/Si$ and 10 nm-Ni/20 nm a-Si:H/200 nm-$SiO_2/Si$ structures were prepared. The samples were annealed by rapid thermal annealing for 40 seconds at $200{\sim}500^{\circ}C$ to produce $NiSi_x$. The resulting changes in sheet resistance, microstructure, phase, chemical composition and surface roughness were examined. The nickel silicide on a 60 nm a-Si:H substrate showed a low sheet resistance at T (temperatures) >$450^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate showed a low sheet resistance at T > $300^{\circ}C$. HRXRD analysis revealed a phase transformation of the nickel silicide on a 60 nm a-Si:H substrate (${\delta}-Ni_2Si{\rightarrow}{\zeta}-Ni_2Si{\rightarrow}(NiSi+{\zeta}-Ni_2Si)$) at annealing temperatures of $300^{\circ}C{\rightarrow}400^{\circ}C{\rightarrow}500^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate had a composition of ${\delta}-Ni_2Si$ with no secondary phases. Through FE-SEM and TEM analysis, the nickel silicide layer on the 60 nm a-Si:H substrate showed a 60 nm-thick silicide layer with a columnar shape, which contained both residual a-Si:H and $Ni_2Si$ layers, regardless of annealing temperatures. The nickel silicide on the 20 nm a-Si:H substrate had a uniform thickness of 40 nm with a columnar shape and no residual silicon. SPM analysis shows that the surface roughness was < 1.8 nm regardless of the a-Si:H-thickness. It was confirmed that the low temperature silicide process using a 20 nm a-Si:H substrate is more suitable for thin film transistor (TFT) active layer applications.

Understanding the Electrical Property of Si-doped β-Ga2O3 via Thermal Annealing Process (열처리 공정을 이용한 Si-doped β-Ga2O3 박막의 전기적 특성의 이해)

  • Lee, Gyeongryul;Park, Ryubin;Chung, Roy Byung Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.19-24
    • /
    • 2020
  • In this work, the electrical property of Si-doped β-Ga2O3 was investigated via a post-growth annealing process. The Ga2O3 samples were annealed under air (O-rich) or N2 (O-deficient) ambient at 800~1,200℃ for 30 mins. There was no correlation between the crystalline quality and the electrical conductivity of the films within the experimental conditions explored in this work. However, it was observed the air ambient led to severe degradation of the film's electrical conductivity while N2-annealed samples exhibited improvement in both the carrier concentration and Hall mobility measured at room temperature. Interestingly, the x-ray photoemission spectroscopy (XPS) revealed that both annealing conditions resulted in higher concentration of oxygen vacancy (VO). Although it was a slight increase for the air-annealed sample, high resistivity of the film strongly suggests that VO cannot be a shallow donor in β-Ga2O3. Therefore, the enhancement of the electrical conductivity of N2-annealed samples must be originated from something other than VO. One possibility is the activation of Si. The XPS analysis of N2-annealed samples showed increasing relative peak area of Si 2p associated with SiOx with increasing annealing temperature from 800 to 1,200℃. However, it was unclear whether or not this SiOx was responsible for the improvement as the electrical conductivity quickly degraded above 1,000℃ even under N2 ambient. Furthermore, XPS suggested the concentration of Si actually increased near the surface as opposed to the shift of the binding energy of Si from its initial chemical state to SiOx state. This study illustrates the electrical changes induced by a post-growth thermal annealing process can be utilized to probe the chemical and electrical states of vacancies and dopants for better understanding of the electrical property of Si-doped β-Ga2O3.