• Title/Summary/Keyword: Thermal $NO_x$

Search Result 329, Processing Time 0.025 seconds

Solubillzation and Extraction Of Antioxidant Astaxanthin by Micelle Formation from Phaffia rhodozyma Cell Homogenate (Phaffia rhodozyma 세포파쇄액으로부터 항산화제 Astaxanthin의 미셀 형성을 통한 가용화 및 추출)

  • Kim, Young-Beom;Ryu, Kang;Lim, Gio-Bin;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.176-181
    • /
    • 2002
  • Astaxanthin (3,3'-dihydroxy-${\beta}$, ${\beta}$-carotene-4-4'-dione), a natural pigment of pink to red color, is widely distributed in nature particularly in the skin layer of salmonoids and the crust of shrimp, lobster, etc. Recently, it was produced from the yeast culture of Phaffia rhodozyma. Because of its high thermal stability and antioxidant functionality, its applications can be extended into food, cosmetics, and pharmaceutical ingredient beyond the traditional feed additive. Because of its very high lipophilicity, astaxanthin has been extracted traditionally by strong organic solvents such as chloroform, petroleum ether, acetone, etc. In this study, we developed a surfactant-based solubillization system for astaxanthin, and used it to extract astaxanthin from disrupted yeast cells. Among Tween 20, Triton X-100 and SDS, Tween 20 was identified as the most suitable surfactant in terms of extraction capacity and safety. The ethylene oxide group of Tween 20 was identified as the most significant factor to increase the HLB value that determined the extraction capacity. The effects of micelle formation condition, such as the molar ratio of astaxanthin and Tween 20, pH, and ionic strength were also investigated. pH and ionic strength showed no significant effects. The optimal molar ratio between astaxanthin and Tween 20 was 1 : 12. Antioxidant activity of astaxanthin was higher than ${\beta}$-carotene and ${\alpha}$-tocopherol. Astaxanthin in the crude extract from the yeast cell was more resistant to air and/or light degradation than pure astaxanthin, probably because of the presence of other carotenoids and lipids.

Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell (염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석)

  • Jo, Seulki;Lee, Kyungjoo;Song, Sangwoo;Park, Jaeho;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

Spherical UO3 Gel Preparation Using the External Gelation Method (External Gelation 방법을 이용한 구형 UO3 Gel 입자 제조)

  • Jeong, KyungChai;Kim, YeonKu;Oh, SeungChul;Cho, Moon-Sung;Lee, YoungWoo;Chang, JongWha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.729-736
    • /
    • 2005
  • HTGR (High Temperature Gas-cooled Reactor) is spotlighted to next generation nuclear power plant for producing the clean hydrogen gas and the electricity. In this study, the spherical $UO_3$ gel particles were prepared by the external gelation process, and the characteristics of these particles were analyzed the particle shape, composition of precipitate, and thermal decomposition characteristics with the Streoscope, FT-IR, and X-ray diffractometer. Raw material of the ADUN (Acid Deficient Uranyl Nitrate) solution, which has [$NO_3$]/[U] mole ratio = 1.75, was obtained from dissolution of the $U_{3}O_{8}$ powder with concentrated $HNO_3$, and its concentration is 3.5 M-U/l. The broth solution is prepared with the ADUN, urea, PVA, and THFA solution. The droplets of the broth solution was made through a nozzle system. From this study, we obtained the following results; 1) an externel chemical gelation process is a suitable method in the spherical $UO_3$ particle production, 2) the particle shape are changed by an urea mixing time, THFA volume, and the viscosity of the broth solution, 3) the amorphous $UO_3$ particles obtained from these experiments was converted to $U_{3}O_{8}$ and then $UO_2$ by heat treatment in hydrogen atmosphere at $600^{\circ}C$.

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

Metallurgical Analysis of Forged Iron Axe Excavated from the Wood-framed Tomb at the Hwangseongdong, Gyeongju, Korea (경주 황성동 목곽묘에서 출토된 단조 철부의 금속학적 특성 분석)

  • Lee, Chan-Hee;Lee, Myeong-Seong;Kim, Jeong-Hun;Yi, Ki-Wook
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.33-42
    • /
    • 2004
  • The forged iron axe found in the No. 2 wood-framed tomb (the middle 3rd century) of Hwangseongdong, Gyeongju is rectangular on the plane level. It shows an obtuse angle in the edge part, while the joint part has the both sides folded up and shows the traces of wood. Under the reflected light, the Iron axe shines in metal luster, which is bright light gray or light creamy colors. The result of x-ray diffraction analysis shows that the axe consists of magnetite and geothite, which can explain why the composition and structure of the original ore has been kept intact. The microtexture of the axe has the irregular network of ferrite and pearlite, and tile cementite of tiny amount in the ferrite background. The overall treatment of the texture seems to be thermal with a high ratio of carbon. There are fine-grained magnetite, wolframite, quartz, calcite, mica, hornblende and pyroxene inside the axe. Those must be the impurities that they failed to remove in the refining process. The normal ferrite is composed of pure iron whose $Fe_2O_3$ proportion is from 99.16 to $99.84\;wt.\%$. Other than them, the ferrite parts usually contain $Al_2O_3\;and\;SiO_2$. The irregular network of pearlite also contains Impurities including $Al_2O_3\;and\;SiO_2$ and shows highly diverse patterns of carbon content. It's because the axe was carburized after the material was made to resemble pure iron. The decarbonization work didn't go well along the process marks. It's estimated that the original ore was bloom produced in low-temperature reduction and formed around in $727^{\circ}C$, which is eutetic temperature.

  • PDF

Lyotropic Behaviors of a Phospholipid-based Lamella Liquid Crystalline Phase Hydrated by Propylene Glycol as a Polar Solvent: Correlation of DSPC vs PG Concentration

  • Jeong, Tae-Hwa;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.108-114
    • /
    • 2007
  • The lyotropic behaviors to form the structure of distearoylphosphatidylcholine (DSPC)-based liquid crystal (LC) hydrated by only propylene glycol (PG) without water were examined by differential scanning calorimetry (DSC), X-ray diffractions (XRD), polarized microscope (PM) and transmission electron microscope (TEM). By increasing the amount of PG instead of water, it showed the phase transition to be gradually changed from anisotropic structures to other structures more close to isotropic ones and their appearance to be changed from solid-like states to liquid-like ones with more fluidity. Below 50% w/w PG, the mixtures of DSPC and PG resulted in no direct observation of LC structure through PM because they were very close to solid-states. From 55% w/w to 90% w/w of PG, the dense lamella crystalline structures were observed through PM, and their thickness and area decreased as the content of PG increased. Measured by DSC with heating process, the main phase transition from α -lamella phase to isotropic phase appeared from 52.89 °C to 47.41 °C to show linearly decreasing behaviors because PG affects the hydrophobic region of DSPC-based lamella phase. The repeating distance of the lamella phase and the interlayer distance between bilayers were calculated with XRDs and the average number of bilayers related to the thickness in LC structure was approximately estimated by combining with TEM results. The WAXS and DSC measurements showed that all of PG molecules contributed to swelling both the lipid layer in the edge region of lamella phase close to phosphate groups and the interlayer between bilayers below 90% w/w of PG. The phase and thermal behaviors were found to depend on the amount of PG used by means of dissolving DSPC as a phospholipid and rearranging its structure. Instead of water, the inducement of PG as a polar solvent in solid-lamella phase is discussed in terms of the swelling effect of PG for DSPC-based lamella membrane.

Effect of Annealing of Nafion Recast Membranes Containing Ionic Liquids

  • Park, Jin-Soo;Shin, Mun-Sik;Sekhon, S.S.;Choi, Young-Woo;Yang, Tae-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The composite membranes comprising of sulfonated polymers as matrix and ionic liquids as ion-conducting medium in replacement of water are studied to investigate the effect of annealing of the sulfonated polymers. The polymeric membranes are prepared on recast Nafion containing the ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ($EMIBF_4$). The composite membranes are characterized by thermogravitational analyses, ion conductivity and small-angle X-ray scattering. The composite membranes annealed at $190^{\circ}C$ for 2 h after the fixed drying step showed better ionic conductivity, but no significant increase in thermal stability. The mean Bragg distance between the ionic clusters, which is reflected in the position of the ionomer peak (small-angle scattering maximum), is larger in the annealed composite membranes containing $EMIBF_4$ than the non-annealed ones. It might have been explained to be due to the different level of ion-clustering ability of the hydrophilic parts (i.e., sulfonic acid groups) in the non- and annealed polymer matrix. In addition, the ionic conductivity of the membranes shows higher for the annealed composite membranes containing $EMIBF_4$. It can be concluded that the annealing of the composite membranes containing ionic liquids due to an increase in ion-clustering ability is able to bring about the enhancement of ionic conductivity suitable for potential use in proton exchange membrane fuel cells (PEMFCs) at medium temperatures ($150-200^{\circ}C$) in the absence of external humidification.

Screening of Spray-Dried K2CO3-Based Solid Sorbents using Various Support Materials for CO2 Capture

  • Eom, Tae Hyoung;Lee, Joong Beom;Baek, Jeom In;Ryub, Chong Kul;Rhee, Young Woo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.115-120
    • /
    • 2015
  • $K_2CO_3$-based dry regenerable sorbents were prepared by spray-drying techniques to improve mass produced $K_2CO_3-Al_2O_3$ sorbents (KEP-CO2P, hereafter), and then tested for their $CO_2$ sorption capacity by a $2,000Nm^3/h$ (0.5 MWe) $CO_2$ capture pilot plant built for Unit 3 of the Hadong thermal power station in 2010. Each of the sample sorbents contained 35 wt.% $K_2CO_3$ as the active materials with various support materials such as $TiO_2$, MgO, Zeolite 13X, $Al_2O_3$, $SiO_2$ and hydrotalcite (HTC). Their physical properties and reactivity were tested to evaluate their applicability to a fluidized-bed or fast transport-bed $CO_2$ capture process. The $CO_2$ sorption capacity and percentage utilization of $K_2CO_3$-MgO based sorbent, Sorb-KM2, was $8.6g-CO_2/100g$-sorbents and 90%, respectively, along with good mechanical strength for fluidized-bed application. Sorbs-KM2 and KT were almost completely regenerated at $140^{\circ}C$. No degradation of Sorb-KM by $SO_2$ added as a pollutant in flue gas was observed during a cycle test.

Applicability of Fuel Supply System for HCNG Engine (HCNG 엔진용 연료시스템의 적용성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi;Lee, Janghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • CNG buses has contributed to improve air quality in cities. But it is difficult to meet the next emission regulations such as EURO-VI without the help of additional post-processing device. Hydorgen has higher flame speed and lower combustion temperature that make it thermal efficiency increase with leaner operation. Using hydrogen natural gas blend (HCNG) fuel is promising technology which can reduce $NO_x$ and $CO_2$ emissions for a natural gas vehicle. However, fuel flow rate of HCNG should be increased since hydrogen's energy density per volume is much smaller than natural gas. In the present study, the characteristics of fuel supply system and its applicability were evaluated in a heavy duty natural gas engine. The results showed that the potential of fuel pressure regulator and fuel metering valve had enough capacity with HCNG. Employed mixer did not affect the distribution characteristics of mixture.