• Title/Summary/Keyword: Therapy Beam

Search Result 739, Processing Time 0.033 seconds

Measurement of Proton Beam Dose-Averaged Linear Energy Transfer Using a Radiochromic Film

  • Seohyeon An;Sang-il Pak;Seonghoon Jeong;Soonki Min;Tae Jeong Kim;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Purpose: Proton therapy has different relative biological effectiveness (RBE) compared with X-ray treatment, which is the standard in radiation therapy, and the fixed RBE value of 1.1 is widely used. However, RBE depends on a charged particle's linear energy transfer (LET); therefore, measuring LET is important. We have developed a LET measurement method using the inefficiency characteristic of an EBT3 film on a proton beam's Bragg peak (BP) region. Methods: A Gafchromic EBT3 film was used to measure the proton beam LET. It measured the dose at a 10-cm pristine BP proton beam in water to determine the quenching factor of the EBT3 film as a reference beam condition. Monte Carlo (MC) calculations of dose-averaged LET (LETd) were used to determine the quenching factor and validation. The dose-averaged LETs at the 12-, 16-, and 20-cm pristine BP proton beam in water were calculated with the quenching factor. Results: Using the passive scattering proton beam nozzle of the National Cancer Center in Korea, the LETd was measured for each beam range. The quenching factor was determined to be 26.15 with 0.3% uncertainty under the reference beam condition. The dose-averaged LETs were measured for each test beam condition. Conclusions: We developed a method for measuring the proton beam LET using an EBT3 film. This study showed that the magnitude of the quenching effect can be estimated using only one beam range, and the quenching factor determined under the reference condition can be applied to any therapeutic proton beam range.

A Pilot Study of the Scanning Beam Quality Assurance Using Machine Log Files in Proton Beam Therapy

  • Chung, Kwangzoo
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.129-133
    • /
    • 2017
  • The machine log files recorded by a scanning control unit in proton beam therapy system have been studied to be used as a quality assurance method of scanning beam deliveries. The accuracy of the data in the log files have been evaluated with a standard calibration beam scan pattern. The proton beam scan pattern has been delivered on a gafchromic film located at the isocenter plane of the proton beam treatment nozzle and found to agree within ${\pm}1.0mm$. The machine data accumulated for the scanning beam proton therapy of five different cases have been analyzed using a statistical method to estimate any systematic error in the data. The high-precision scanning beam log files in line scanning proton therapy system have been validated to be used for off-line scanning beam monitoring and thus as a patient-specific quality assurance method. The use of the machine log files for patient-specific quality assurance would simplify the quality assurance procedure with accurate scanning beam data.

Radiation Therapy against Pediatric Malignant Central Nervous System Tumors : Embryonal Tumors and Proton Beam Therapy

  • Lim, Do Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.386-392
    • /
    • 2018
  • Radiation therapy is highly effective for the management of pediatric malignant central nervous system (CNS) tumors including embryonal tumors. With the increment of long-term survivors from malignant CNS tumors, the radiation-related toxicities have become a major concern and we need to improve the treatment strategies to reduce the late complications without compromising the treatment outcomes. One of such strategies is to reduce the radiation dose to craniospinal axis or radiation volume and to avoid or defer radiation therapy until after the age of three. Another strategy is using particle beam therapy such as proton beams instead of photon beams. Proton beams have distinct physiologic advantages over photon beams and greater precision in radiation delivery to the tumor while preserving the surrounding healthy tissues. In this review, I provide the treatment principles of pediatric CNS embryonal tumors and the strategic improvements of radiation therapy to reduce treatment-related late toxicities, and finally introduce the increasing availability of proton beam therapy for pediatric CNS embryonal tumors compared with photon beam therapy.

Feasibility Test of Flat-Type Faraday Cup for Ultrahigh-Dose-Rate Transmission Proton Beam Therapy

  • Sang-il Pak;Sungkoo Cho;Seohyeon An;Seonghoon Jeong;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.108-113
    • /
    • 2022
  • Purpose: Proton therapy has been used for optimal cancer treatment by adapting its Bragg-peak characteristics. Recently, a tissue-sparing effect was introduced in ultrahigh-dose-rate (FLASH) radiation; the high-energy transmission proton beam is considered in proton FLASH therapy. In measuring high-energy/ultrahigh-dose-rate proton beam, Faraday Cup is considered as a dose-rate-independent measurement device, which has been widely studied. In this paper, the feasibility of the simply designed Faraday Cup (Poor Man's Faraday Cup, PMFC) for transmission proton FLASH therapy is investigated. Methods: In general, Faraday cups were used in the measurement of charged particles. The simply designed Faraday Cup and Advanced Markus ion chamber were used for high-energy proton beam measurement in this study. Results: The PMFC shows an acceptable performance, including accuracy in general dosimetric tests. The PMFC has a linear response to the dose and dose rate. The proton fluence was decreased with the increase of depth until the depth was near the proton beam range. Regarding secondary particles backscatter from PMFC, the effect was negligible. Conclusions: In this study, we performed an experiment to investigate the feasibility of PMFC for measuring high-energy proton beams. The PMFC can be used as a beam stopper and secondary monitoring system for transmission proton beam FLASH therapy.

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.

Performance prediction of gamma electron vertex imaging (GEVI) system for interfractional range shift detection in spot scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2213-2220
    • /
    • 2022
  • The maximum dose delivery at the end of the beam range provides the main advantage of using proton therapy. The range of the proton beam, however, is subject to uncertainties, which limit the clinical benefits of proton therapy and, therefore, accurate in vivo verification of the beam range is desirable. For the beam range verification in spot scanning proton therapy, a prompt gamma detection system, called as gamma electron vertex imaging (GEVI) system, is under development and, in the present study, the performance of the GEVI system in spot scanning proton therapy was predicted with Geant4 Monte Carlo simulations in terms of shift detection sensitivity, accuracy and precision. The simulation results indicated that the GEVI system can detect the interfractional range shifts down to 1 mm shift for the cases considered in the present study. The results also showed that both the evaluated accuracy and precision were less than 1-2 mm, except for the scenarios where we consider all spots in the energy layer for a local shifting. It was very encouraging results that the accuracy and precision satisfied the smallest distal safety margin of the investigated beam energy (i.e., 4.88 mm for 134.9 MeV).

Proton Therapy Review: Proton Therapy from a Medical

  • Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.99-110
    • /
    • 2020
  • With hope and concern, the first Korean proton therapy facility was introduced to the National Cancer Center (NCC) in 2007. It added a new chapter to the history of Korean radiation therapy. There have been challenging clinical trials using proton beam therapy, which has seen many impressive results in cancer treatment. Compared to the rapidly increasing number of proton therapy facilities in the world, only one more proton therapy center has been added since 2007 in Korea. The Samsung Medical Center installed a proton therapy facility in 2015. Most radiation oncology practitioners would agree that the physical properties of the proton beam provide a clear advantage in radiation treatment. But the expensive cost of proton therapy facilities is still one of the main reasons that hospitals are reluctant to introduce them in Korea. I herein introduce the history of proton therapy and the cutting edge technology used in proton therapy. In addition, I will cover the role of a medical physicist in proton therapy and the future prospects of proton therapy, based on personal experience in participating in proton therapy programs from the beginning at the NCC.

The evaluation of properties for radiation therapy techniques with flattening filter-free beam and usefulness of time and economy to a patient with the radiation therapy (Flattening filter-free beam을 이용한 방사선 치료 기법의 특성 및 환자의 시간적.경제적 유용성 평가)

  • Goo, Jang Hyeon;Won, Hui Su;Hong, Joo Wan;Chang, Nam Jun;Park, Jin Hong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.363-368
    • /
    • 2014
  • Purpose : The aim of this study was to appraise properties for radiation therapy techniques and effectiveness of time and economy to a patient in the case of applying flattening filter-free (3F) and flattening filter (2F) beam to the radiation therapy. Materials and Methods : Alderson rando phantom was scanned for computed tomography image. Treatment plans for intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and stereotactic body radiation therapy (SBRT) with 3F and 2F beam were designed for prostate cancer. To evaluate the differences between the 3F and 2F beam, total monitor units (MUs), beam on time (BOT) and gantry rotation time (GRT) were used and measured with $TrueBeam^{TM}$ STx and Surveillance And Measurement (SAM) 940 detector was used for photoneutron emitted by using 3F and 2F. To assess temporal and economical aspect for a patient, total treatment periods and medical fees were estimated. Results : In using 3F beam, total MUs in IMRT plan increased the highest up to 34.0% and in the test of BOT, GRT and photoneutron, the values in SBRT plan decreased the lowest 39.8, 38.6 and 48.1%, respectively. In the temporal and economical aspect, there were no differences between 3F and 2F beam in all of plans and the results showed that 10 days and 169,560 won was lowest in SBRT plan. Conclusion : According as the results, total MUs increased by using 3F beam than 2F beam but BOT, GRT and photoneutron decreased. From above the results, using 3F beam can decrease intra-fraction setup error and risk of radiation-induced secondary malignancy. But, using 3F beam did not make the benefits of temporal and economical aspect for a patient with the radiation therapy.

Basics of particle therapy II: relative biological effectiveness

  • Choi, Jin-Hyun;Kang, Jin-Oh
    • Radiation Oncology Journal
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In the previous review, the physical aspect of heavy particles, with a focus on the carbon beam was introduced. Particle beam therapy has many potential advantages for cancer treatment without increasing severe side effects in normal tissue, these kinds of radiation have different biologic characteristics and have advantages over using conventional photon beam radiation during treatment. The relative biological effectiveness (RBE) is used for many biological, clinical endpoints among different radiation types and is the only convenient way to transfer the clinical experience in radiotherapy with photons to another type of radiation therapy. However, the RBE varies dependent on the energy of the beam, the fractionation, cell types, oxygenation status, and the biological endpoint studied. Thus this review describes the concerns about RBE related to particle beam to increase interests of the Korean radiation oncologists' society.

Therapeutic Proton Beam Range Measurement with EBT3 Film and Comparison with Tool for Particle Simulation

  • Lee, Nuri;Kim, Chankyu;Song, Mi Hee;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.112-119
    • /
    • 2019
  • Purpose: The advantages of ocular proton therapy are that it spares the optic nerve and delivers the minimal dose to normal surrounding tissues. In this study, it developed a solid eye phantom that enabled us to perform quality assurance (QA) to verify the dose and beam range for passive single scattering proton therapy using a single phantom. For this purpose, a new solid eye phantom with a polymethyl-methacrylate (PMMA) wedge was developed using film dosimetry and an ionization chamber. Methods: The typical beam shape used for eye treatment is approximately 3 cm in diameter and the beam range is below 5 cm. Since proton therapy has a problem with beam range uncertainty due to differences in the stopping power of normal tissue, bone, air, etc, the beam range should be confirmed before treatment. A film can be placed on the slope of the phantom to evaluate the Spread-out Bragg Peak based on the water equivalent thickness value of PMMA on the film. In addition, an ionization chamber (Pin-point, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The eye phantom was used for independent patient-specific QA. The differences in the output and beam range between the measurement and the planned treatment were less than 1.5% and 0.1 cm, respectively. Conclusions: An eye phantom was developed and the performance was successfully validated. The phantom can be employed to verify the output and beam range for ocular proton therapy.