• Title/Summary/Keyword: Therapeutic potentials

Search Result 67, Processing Time 0.022 seconds

Therapeutic potentials of Brassica juncea: an overview

  • Kumar, Vikas;Thakur, Ajit Kumar;Barothia, Narottam Dev;Chatterjee, Shyam Sunder
    • CELLMED
    • /
    • v.1 no.1
    • /
    • pp.2.1-2.16
    • /
    • 2011
  • Diverse medicinal uses of different types of products obtainable from Brassica juncea have been known for centuries. Most such traditionally known uses of the plant have been centered on its seeds and oils obtainable from them. During more recent decades diverse bio-active molecules and their therapeutically interesting pharmacological properties of its green edible leaves have also been described, and they are now often considered to be effective substitutes for other so called "healthy" Brassica vegetables. However, little concentrated effort has yet been made to obtain a pharmacologically better defined phytopharmaceutical from this easily cultivable plant of commercial interest in many underdeveloped and developing countries. The main aim of this overview is to point out some possibilities for designing and developing such products from the plant for combating the rapidly spreading obesity epidemic in the developed countries and some other countries. Efforts to achieve such goals could as well be an economically more feasible, and culturally more acceptable, starting point for better understanding the potential health benefits of other vegetarian foods.

Current Status of Stem cell Research and its Connection with Biomedical Engineering Technologies (줄기세포 연구의 현황과 의공학 기술과의 접목)

  • Park, Yong-Doo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • Researches for stem cells have been focused on scientists in biomedical sciences as well as clinical application for its great therapeutic potentials. Stem cells have two distinct characteristics: self-renewal and differentiation. In this short review, the links between stem cell research and biomedical engineering is discussed based on the basic characteristics of stem cells. This concept can be extended to the fundamental questions of biological sciences for cells such as proliferation, apoptosis, differentiation, and migration. For understanding proliferation and apoptosis of stem cells, techniques from biomedical engineering such as surface patterning, MEMS, nanotechnologies have been used. The advanced technologies such as microfluidic technologies, three dimensional scaffold fabrication, and mechanical/electrical stimulation have also been used in cell differentiation and migration. Basic and unsolved questions in the stem cell research field have limitations by studying conventional technologies. Therefore, the strategic fusion between stem cell biology and novel biomedical engineering field will break the barriers for understanding fundamental questions of stem cells, which can open the window for the clinical applications of stem cell based therapeutics as well as regeneration of damaged tissues.

Molecular Diagnosis for Personalized Target Therapy in Gastric Cancer

  • Cho, Jae Yong
    • Journal of Gastric Cancer
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2013
  • Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy.

TARGETING RECEPTOR TYROSINE KINASE ON ENDOTHELIAL CELLS IN AN ORTHOTOPIC TUMOR MODEL OF ORAL SQUAMOUS CELL CARCINORMA (구강 편평상피세포암 동위종양 모델에서 내피세포의 수용체 타이로신 인산화효소에 대한 표적치료)

  • Park, Young-Wook;Kim, So-Hee
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.2
    • /
    • pp.55-65
    • /
    • 2009
  • Purpose: We determined the therapeutic effects of blockade of epidermal growth factor(EGF) and vascular endothelial growth factor(VEGF) receptor tyrosine kinases on the growth of oral squamous cell carcinoma(OSCC) xenografted in athymic nude mice. Experimental Design: We investigated the in vivo antitumor effects of a tyrosine kinase inhibitor for EGFR and VEGFR-2, AEE788 in a mouth floor(orthotopic) tumor model. Nude mice with orthotopic tumors were randomized to receive AEE788, paclitaxel, a combination of AEE788 and paclitaxel, or control. Antitumor mechanisms of AEE788 were determined by immunohistochemical/immunofluorescent and apoptosis assays. Results: Tumors of mice treated with AEE788 demonstrated down-regulation of phosphorylated EGFR, phosphorylated VEGFR and their downstream mediators(pMAPK and pAkt), decreased proliferative index, decreased microvessel density(MVD). As a result, growth of the primary tumor and nodal metastatic potentials were inhibited by AEE788. Conclusion: These data show that EGFR and VEGFR can be molecular targets for the treatment of OSCC.

Potential Effects of Microglial Activation Induced by Ginsenoside Rg3 in Rat Primary Culture: Enhancement of Type A Macrophage Scavenger Receptor Expression

  • Joo, Seong-Soo;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1164-1169
    • /
    • 2005
  • Brain microglia are phagocytic cells that are the major inflammatory response cells of the central nervous system and widely held to play important pathophysiologic roles in Alzheimer's disease (AD) in both potentially neurotoxic responses and potentially beneficial phagocytic responses. In the study, we examined whether ginsonoside Rg3, a by-product of red ginseng, enhances the microglial phagocytosis of $A{\beta}$. We found that Rg3 promoted $A{\beta}$ uptake, internalization, and digestion. Increased maximal $A{\beta}$ uptake was observed at 4 and 8 h after Rg3 pretreatment (25 ${\mu}g/mL$), and the internalized $A{\beta}$ was almost completely digested from cells within 36 h when pretreated with Rg3 comparing with single non-Rg3-treated groups. The expression of MSRA (type A MSR) was also up-regulated by Rg3 treatment in a dose- and time-dependent manner which was coincidently identified in western blots for MSRA proteins in cytosol. These results indicate that microglial phagocytosis of $A{\beta}$ may be enhanced by Rg3 and the effect of Rg3 on promoting clearance of $A{\beta}$ may be related to the MSRA-associated action of Rg3. Thus, stimulation of the MSRA might contribute to the therapeutic potentials of Rg3 in microglial phagocytosis and digestion in the treatment of AD.

An Antioxidative and Antiinflammatory Agent for Potential Treatment of Osteoarthritis from Ecklonia cava

  • Shin Hyeon-Cheol;Hwang Hye Jeong;Kang Kee Jung;Lee Bong Ho
    • Archives of Pharmacal Research
    • /
    • v.29 no.2
    • /
    • pp.165-171
    • /
    • 2006
  • Osteoarthritis is thought to be induced by the ageing-related loss of homeostatic balance between degeneration and repair mechanism around cartilage tissue in which inflammatory mediators such as reactive oxygen species, cytokines and prostaglandins are prone to overproduction under undesirable physiological conditions. Phlorotannins are unique polyphenolic compounds bearing dibenzo-1,4-dioxin skeleton which are not found in terrestrial plants but found only in some brown algal species such as Ecklonia and Eisenia families. Phlorotanninrich extracts of Ecklonia cava including LAD103 showed significant antioxidant activities such as DPPH radical scavenging, ferric ion reduction, peroxynitrite scavenging, and inhibition of LDL oxidation, indicating their possible antioxidative interference both in onset and downstream consequences of osteoarthritis. LAD103 also showed significant down regulation of $PGE_2$ generation in LPS-treated RAW 246.7 cells, and significant inhibition of human recombinant interleukin-$1{\alpha}$-induced proteoglycan degradation, indicating its beneficial involvement in pathophysiological consequences of osteoarthritis, the mechanism of which needs further investigation. Since LAD103 showed strong therapeutic potentials in arthritic treatment through several in vitro experiments, it is highly encouraged to perform further mechanistic and efficacy studies.

Glabridin Liposome Ameliorating UVB-Induced Erythema and Lethery Skin by Suppressing Inflammatory Cytokine Production

  • Zhang, Chijian;Lu, Yongjie;Ai, Yong;Xu, Xian;Zhu, Siyang;Zhang, Bing;Tang, Minghui;Zhang, Lanyue;He, Tinggang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.630-636
    • /
    • 2021
  • Glabridin, a compound of the flavonoid, has shown outstanding skin-whitening and anti-aging properties, but its water insolubility limits its wide application. Therefore, glabridin liposome (GL) has been developed to improve its poor bioavailability, while there are few studies to evaluate its amelioration of UVB- induced photoaging. This study is performed to investigate the amelioration of GL against UVB- induced cutaneous photoaging. The prepared GL has a spheroidal morphology with an average diameter of 200 nm. The GL shows lower cytotoxicity than glabridin, but it has a more effective role in inhibition of melanin. Moreover, the application of GL can effectively relieve UV radiation induced erythema and leathery skin, associated with the down-regulated expression of inflammatory cytokines (TNF-α, IL-6 and IL-10). Taken together, these results demonstrate that GL has potentials as topical therapeutic agents against UVB radiation induced skin damage through inhibiting inflammation.

The theranostic roles of extracellular vesicles in pregnancy disorders

  • Saadeldin, Islam M.;Tanga, Bereket Molla;Bang, Seonggyu;Fang, Xun;Yoon, Ki-Young;Lee, Sanghoon;Cho, Jongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.2-12
    • /
    • 2022
  • Extracellular vesicles (EVs) are nanovesicles that carry bioactive cargoes of proteins, lipids, mRNAs, and miRNAs between living cells. Their role in cellular communication has gained the attention of several research reports globally in the last decade. EVs are critically involved in sperm functions, oocyte functions, fertilization, embryonic development, and pregnancy. The review summarizes the state-of-the-art of EVs research in the diagnostic and therapeutic (theranostic) potentials of the EVs during the pregnancy that might provide a solution for gestational disturbances such as implantation failure, maternal health problems, gestational diabetes, and preeclampsia. EVs can be found in all biological fluids of the fetus and the mother and would provide a non-invasive and excellent tool for diagnostic purposes. Moreover, we provide the current efforts in manufacturing and designing targeted therapeutics using synthetic and semi-synthetic nanovesicles mimicking the natural EVs for efficient drug delivery during pregnancy.

Luteolin inhibits H2O2-induced cellular senescence via modulation of SIRT1 and p53

  • Zhu, Ri Zhe;Li, Bing Si;Gao, Shang Shang;Seo, Jae Ho;Choi, Byung-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • Luteolin, a sort of flavonoid, has been reported to be involved in neuroprotective function via suppression of neuroinflammation. In this study, we investigated the protective effect of luteolin against oxidative stress-induced cellular senescence and its molecular mechanism using hydrogen peroxide (H2O2)-induced cellular senescence model in House Ear Institute-Organ of Corti 1 cells (HEI-OC1). Our results showed that luteolin attenuated senescent phenotypes including alterations of morphology, cell proliferation, senescence-associated 𝛽-galactosidase expression, DNA damage, as well as related molecules expression such as p53 and p21 in the oxidant challenged model. Interestingly, we found that luteolin induces expression of sirtuin 1 in dose- and time-dependent manners and it has protective role against H2O2-induced cellular senescence by upregulation of sirtuin 1 (SIRT1). In contrast, the inhibitory effect of luteolin on cellular senescence under oxidative stress was abolished by silencing of SIRT1. This study indicates that luteolin effectively protects against oxidative stress-induced cellular senescence through p53 and SIRT1. These results suggest that luteolin possesses therapeutic potentials against age-related hearing loss that are induced by oxidative stress.

New approach of using cortico-cortical evoked potential for functional brain evaluation

  • Jo, Hyunjin;Kim, Dongyeop;Song, Jooyeon;Seo, Dae-Won
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.2
    • /
    • pp.69-81
    • /
    • 2021
  • Cortico-cortical evoked potential (CCEP) mapping is a rapidly developing method for visualizing the brain network and estimating cortical excitability. The CCEP comprises the early N1 component the occurs at 10-30 ms poststimulation, indicating anatomic connectivity, and the late N2 component that appears at < 200 ms poststimulation, suggesting long-lasting effective connectivity. A later component at 200-1,000 ms poststimulation can also appear as a delayed response in some studied areas. Such delayed responses occur in areas with changed excitability, such as an epileptogenic zone. CCEP mapping has been used to examine the brain connections causally in functional systems such as the language, auditory, and visual systems as well as in anatomic regions including the frontoparietal neocortices and hippocampal limbic areas. Task-based CCEPs can be used to measure behavior. In addition to evaluations of the brain connectome, single-pulse electrical stimulation (SPES) can reflect cortical excitability, and so it could be used to predict a seizure onset zone. CCEP brain mapping and SPES investigations could be applied both extraoperatively and intraoperatively. These underused electrophysiologic tools in basic and clinical neuroscience might be powerful methods for providing insight into measures of brain connectivity and dynamics. Analyses of CCEPs might enable us to identify causal relationships between brain areas during cortical processing, and to develop a new paradigm of effective therapeutic neuromodulation in the future.