• 제목/요약/키워드: Therapeutic candidate

검색결과 270건 처리시간 0.03초

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen Qi;Zhipeng Yan;Yueyao Wang;Nan Ji;Xiaoya Yang;Ao Zhang;Meng Li;Fengqin Xu;Junping Zhang
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.228-236
    • /
    • 2023
  • Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.

Therapeutic effects of orally administered CJLP55 for atopic dermatitis via the regulation of immune response

  • Hyung, Kyeong Eun;Kim, Soo Jeong;Jang, Ye Won;Lee, Da Kyoung;Hyun, Kee Hyeob;Moon, Byoung Seok;Kim, Bongjoon;Ahn, Heeyoon;Park, So-Young;Sohn, Uy Dong;Park, Eon Sub;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.335-343
    • /
    • 2017
  • Atopic dermatitis (AD) is an inflammatory skin condition accompanied by symptoms such as edema and hemorrhage. Kimchi is a traditional fermented Korean dish consisting of various probiotics. In this study, the therapeutic effect of Lactobacillus plantarum CJLP55 isolated from Kimchi was studied in AD-induced mice. Orally administered Lactobacillus strain, CJLP55, suppressed AD symptoms and high serum IgE levels. CJLP55 administration reduced the thickness of the epidermis, infiltration of mast cells and eosinophils into the skin lesion, enlargement of axillary lymph nodes, and increase in cell population in axillary lymph nodes. CJLP55 treatment decreased the production of type 2 cytokines, such as interleukin (IL)-4, IL-5, IL-10, IL-12, interferon (IFN)-${\gamma}$, and IL-6,which were stimulated by house dust mite extracts, in the axillary lymph node cells. Orally administered CJLP55 exhibited a therapeutic effect on house dust mite-induced AD in NC/Nga mice after onset of the disease by altering immune cell activation. The Lactobacillus strain, CJLP55, isolated from Kimchi, suppressed AD. Our results suggest its possible use as a potential candidate for management of AD.

The Therapeutic Effects of Optimal Dose of Mesenchymal Stem Cells in a Murine Model of an Elastase Induced-Emphysema

  • Kim, You-Sun;Kim, Ji-Young;Huh, Jin Won;Lee, Sei Won;Choi, Soo Jin;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • 제78권3호
    • /
    • pp.239-245
    • /
    • 2015
  • Background: Chronic obstructive pulmonary disease is characterized by emphysema, chronic bronchitis, and small airway remodeling. The alveolar destruction associated with emphysema cannot be repaired by current clinical practices. Stem cell therapy has been successfully used in animal models of cigarette smoke- and elastase-induced emphysema. However, the optimal dose of mesenchymal stem cells (MSCs) for the most effective therapy has not yet been determined. It is vital to determine the optimal dose of MSCs for clinical application in emphysema cases. Methods: In the present study, we evaluated the therapeutic effects of various doses of MSCs on elastase-induced emphysema in mice. When 3 different doses of MSCs were intravenously injected into mice treated with elastase, only $5{\times}10^4$ MSCs showed a significant effect on the emphysematous mouse lung. We also identified action mechanisms of MSCs based on apoptosis, lung regeneration, and protease/antiprotease imbalance. Results: The MSCs were not related with caspase-3/7 dependent apoptosis. But activity of matrix metalloproteinase 9 increased by emphysematous lung was decreased by intravenously injected MSCs. Vascular endothelial growth factor were also increased in lung from MSC injected mice, as compared to un-injected mice. Conclusion: This is the first study on the optimal dose of MSCs as a therapeutic candidate. This data may provide important basic data for determining dosage in clinical application of MSCs in emphysema patients.

Therapeutic Effect of Epidurally Administered Lipo-Prostaglandin E1 Agonist in a Rat Spinal Stenosis Model

  • Park, Sang Hyun;Lee, Pyung Bok;Choe, Ghee Young;Moon, Jee Yeon;Nahm, Francis Sahngun;Kim, Yong Chul
    • The Korean Journal of Pain
    • /
    • 제27권3호
    • /
    • pp.219-228
    • /
    • 2014
  • Background: A lipo-prostaglandin E1 agonist is effective for the treatment of neurological symptoms of spinal stenosis when administered by an oral or intravenous route. we would like to reveal the therapeutic effect of an epidural injection of lipo-prostaglandin E1 on hyperalgesia in foraminal stenosis. Methods: A total of 40 male Sprague-Dawley rats were included. A small stainless steel rod was inserted into the L5/L6 intervertebral foramen to produce intervertebral foraminal stenosis and chronic compression of the dorsal root ganglia (DRG). The rats were divided into three groups: epidural PGE1 (EP) (n = 15), saline (n = 15), and control (n = 10). In the EP group, $0.15{\mu}g{\cdot}kg-1$ of a lipo-PGE1 agonist was injected daily via an epidural catheter for 10 days from postoperative day 3. In the saline group, saline was injected. Behavioral tests for mechanical hyperalgesia were performed for 3 weeks. Then, the target DRG was analyzed for the degree of chromatolysis, chronic inflammation, and fibrosis in light microscopic images. Results: From the fifth day after lipo-PGE1 agonist injection, the EP group showed significant recovery from mechanical hyperalgesia, which was maintained for 3 weeks (P < 0.05). Microscopic analysis showed much less chromatolysis in the EP group than in the saline or control groups. Conclusions: An epidurally administered lipo-PGE1 agonist relieved neuropathic pain, such as mechanical hyperalgesia, in a rat foraminal stenosis model, with decreasing chromatolysis in target DRG. We suggest that epidurally administered lipo-PGE1 may be a useful therapeutic candidate for patients with spinal stenosis.

아마인 추출물의 AKT 신호 조절을 통한 콕사키바이러스 증식억제 (Extract of Linum usitatissimum L. inhibits Coxsackievirus B3 Replication through AKT Signal Modulation)

  • 신하현;문성진;임병관;김진희
    • 생약학회지
    • /
    • 제49권4호
    • /
    • pp.291-297
    • /
    • 2018
  • Coxsackievirus B3 (CVB3) is a very well-known causative agent for viral myocarditis and meningitis in human. However, the effective vaccine and therapeutic drug are not developed yet. CVB3 infection activates host cell AKT signaling. Inhibition of AKT signaling pathway may attenuate CVB3 replication and prevent CVB3-mediate viral myocarditis. In this study, we determined antiviral effect of the selected natural plant extract to develop a therapeutic drug for CVB3 treatment. We screened several chemically extracted natural compounds by using HeLa cell-based cell survival assay. Among them, Linum usitatissimum L. extract was selected for antiviral drug candidate. L. usitatissimum extract significantly decreased CVB3 replication and cell death in CVB3 infected HeLa cells with no cytotoxicity. CVB3 protease 2A induced eIF4G1 cleavage and viral capsid protein VP1 production were dramatically decreased by L. usitatissimum extract treatment. In addition, virus positive and negative strand genome amplification were significantly decreased by 1 mg/ml L. usitatissimum extract treatment. Especially, L. usitatissimum extract was associated with inhibition of AKT signal and maintain mTOR activity. In contrast, Atg12 and LC3 expression were not changed by L. usitatissimum extract treatment. In this study, the potential AKT signal inhibitor, L. usitatissimum extract, was significantly inhibited viral genome replication and protein production by inhibition of AKT signal. These results suggested that L. usitatissimum extract is a novel therapeutic agent for treatment of CVB3-mediated diseases.

The Suicide Gene Diphtheria Toxin A Based Therapy in Cancer Treatment

  • Nguyen.T.Q., Anh;Jeong, Dong-Kee
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권3호
    • /
    • pp.155-168
    • /
    • 2012
  • Therapeutic cancer is a long lasting and turbulent history accompany with the milestones in surgical intervention, chemotherapy and radiotherapy. In the past decade, however, metastatic cancer still obstinately exists challenging the professional scientist. Beside the major forms of cancer treatment, Diphtheria toxin (DT) which is produced by a pathogenic strain of bacterium Corynebacterium diphtheria to shield themselves against the other dangerous organism, have been researched as a potential candidate to overcome the drawback such as non-specific, non-effect to drug resistant cancer cell and side effects when using chemotherapy and radiotherapy. In the context of suicide gene therapy, the DT expression under controlling of tissue-specific promoter will be targeted in cancer cell but defect in normal cell. The molecular mechanism, characteristic of DT-bases therapy and prominent achievements of preclinical and clinical studies for the past decade are summarized and discussed in this review.

In vivo Antimutagenicity of Dadih Probiotic Bacteria towards Trp-P1

  • Surono, Ingrid S.;Pato, Usman;Koesnandar, Koesnandar;Hosono, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.119-123
    • /
    • 2009
  • In vitro acid- and bile-tolerant lactic acid bacteria isolated and identified from Indonesian traditional fermented milk dadih might be considered as potential probiotic strains after further characterization with animal models, especially for their therapeutic properties. Five dadih lactic bacteria isolates each had moderate survival rate for 2 h at pH 2.0, as well as bile tolerance. The aim of this research was to identify candidate probiotic lactic bacteria among indigenous dadih lactic isolates originated from Bukit Tinggi, West Sumatra, especially their in vivo antimutagenic property. Milk cultured with Enterococcus faecium IS-27526 significantly lowered fecal mutagenicity of rats as compared to the control group, skim milk, and milk cultured with L. plantarum IS-20506. These results suggest that Enterococcus faecium IS-27526 may serve as a potential probiotic strain with its antimutagenicity.

Human-yeast genetic interaction for disease network: systematic discovery of multiple drug targets

  • Suk, Kyoungho
    • BMB Reports
    • /
    • 제50권11호
    • /
    • pp.535-536
    • /
    • 2017
  • A novel approach has been used to identify functional interactions relevant to human disease. Using high-throughput human-yeast genetic interaction screens, a first draft of disease interactome was obtained. This was achieved by first searching for candidate human disease genes that confer toxicity in yeast, and second, identifying modulators of toxicity. This study found potentially disease-relevant interactions by analyzing the network of functional interactions and focusing on genes implicated in amyotrophic lateral sclerosis (ALS), for example. In the subsequent proof-of-concept study focused on ALS, similar functional relationships between a specific kinase and ALS-associated genes were observed in mammalian cells and zebrafish, supporting findings in human-yeast genetic interaction screens. Results of combined analyses highlighted MAP2K5 kinase as a potential therapeutic target in ALS.

Marine Microalgal Transgenesis: Applications to Biotechnology and Human Functional Foods

  • Kim, Young Tae
    • 한국해양바이오학회지
    • /
    • 제1권1호
    • /
    • pp.34-39
    • /
    • 2006
  • Molecular biology and microalgal biotechnology have the potential to play a major role in improving the production efficiency of a vast variety of products including functional foods, industrial chemicals, compounds with therapeutic applications and bioremediation solutions from a virtually untapped source. Microalgae are a source of natural products and have been recently studied for biotechnological applications. Efficient genetic transformation systems in microalgae are necessary to enhance their potential to be used for human health. A microalga such as Chlarella is a eukaryotic organism sharing its metabolic pathways with higher plants. This microalga is capable of expressing, glycosylating, and correctly processing proteins which normally undergo post-translational modification. Moreover, it can be cultured inexpensively because it requires only limited amount of sunlight and carbon dioxide as energy sources. Because of these advantages, Chlarella may be of great potential interest in biotechnology as a good candidate for bioreactor in the production of pharmaceutical and industrial compounds for human functional foods. Here, we briefly discuss recent progress in microalgal transgenesis that has utilized molecular biology to produce functional proteins and bioactive compounds.

  • PDF

3-메톡시-6-알릴치오피리다진의 사람 췌장암 세포 사멸작용 (Induction of Apoptosis by 3-Methoxy-6-Allylthiopyridazine in Human Pancreatic Cancer Cells)

  • 강영신;서연원;권순경;정춘식;이용수
    • 약학회지
    • /
    • 제49권4호
    • /
    • pp.335-339
    • /
    • 2005
  • In this study we investigated the effect of 3-methoxy-6-allylthiopyridazine on cell growth in BxPC3 and PANC1 human pancreatic cancer cells. The treatment with 3-methoxy-6-allylthiopyridazine for 48h decreased cell viability and induced apoptotic cell death in a dose-dependent manner, assessed by using the MTT assay and the flow cytometry, respectively. These results suggest that 3-methoxy-6-allylthiopyridazine may be a good candidate for the therapeutic management of human pancreatic cancers.