• Title/Summary/Keyword: Theoretical validation

Search Result 236, Processing Time 0.021 seconds

Testing a Middle-Range Theory of Self-Care of Chronic Illness: A Validation for Korean Adult Patients with Severe Hypertension (만성질환 자가간호 중범위이론 검증: 성인 중증고혈압환자를 대상으로)

  • Gil, Eunha;Oh, Heeyoung
    • Journal of Korean Academy of Nursing
    • /
    • v.48 no.5
    • /
    • pp.521-533
    • /
    • 2018
  • Purpose: The aims of this study are to provide a theoretical framework for improving the self-care of adults with severe hypertension and to examine the practical suitability of a middle-range theory of self-care for chronic illness by validating the structural model. Methods: Data were collected at a university hospital in D metropolitan city from July 1 to August 14, 2015. A total of 224 Korean adult patients with severe hypertension were recruited. Data were analyzed using SPSS 22.0 and AMOS 22.0. Results: The results show that the fit index of the hypothetical model meets the recommended level; 7 out of 8 hypothetical model paths were statistically significant. Motivation, self-efficacy, support from others, and accessibility to care showed statistical significance and explained 67.3% of the self-care process. The self-care process explained 45.3%, 63.6%, and 26.5% of quality of life, health, and illness stability, respectively. Conclusion: This model can be used as a theoretical framework for improving self-care among adult Korean patients with severe hypertension. Moreover, the practical suitability and validity of the middle-range theory of self-care for chronic illness is secured.

Development of a Scale for Measuring Nurses' Stress (간호사의 스트레스 측정도구 개발)

  • Kang, Younhee;Lee, Kyungmi;Hur, Yujin
    • Journal of Korean Clinical Nursing Research
    • /
    • v.30 no.1
    • /
    • pp.11-23
    • /
    • 2024
  • Purpose: This study developed a scale of nurses' stress and examined the validity and reliability of the scale. Methods: The scale was developed according to DeVellis' scale development procedure. Based on the Nursing Work Environment Stress model and the results of focus group interviews, 43 preliminary items were generated. A survey was conducted with 208 clinical nurses to test the psychometric properties of the scale. Both exploratory factor analysis and confirmatory factor analysis were employed to figure out and confirm the scale's theoretical structure statistically. In addition, content, convergent, and discriminative validity were evaluated and Cronbach's α was calculated to test internal reliability. Results: The final scale consisted of 19 items and verified four-factor structures. The structure of the scale was confirmed using confirmatory factor analysis, and it showed moderate correlations with the Copenhagen Burnout Inventory and Korean Nurses Occupational Stress Scale. Cronbach's α was .87. Conclusion: A scale of nurses' stress to nursing work was developed to embrace a wide range of nurses' psychological responses to nursing work based on the theoretical model.

Analysis of signal cable noise currents in nuclear reactors under high neutron flux irradiation

  • Xiong Wu;Li Cai;Xiangju Zhang;Tingyu Wu;Jieqiong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4628-4636
    • /
    • 2023
  • Cables are indispensable in nuclear power plants for transmitting data measured by various types of detectors, such as self-powered neutron detectors (SPNDs). These cables will generate disturbing signals that must be accurately distinguished and eliminated. Given that the cable current is not very significant, previous research has focused on SPND, with little attention paid to cable evaluation and validation. This paper specifically focuses on the quantitative analysis of cables and proposes a theoretical model to predict cable noise. In this model, the reaction characteristics between irradiated neutrons and cables were discussed thoroughly. Based on the Monte Carlo method, a comprehensive simulation approach of neutron sensitivity was introduced and long-term irradiation experiments in a heavy water reactor (HWR) were designed to verify this model. The theoretical results of this method agree quite well with the experimental measurements, proving that the model is reliable and exhibits excellent accuracy. The experimental data also show that the cable current accounts for approximately 0.2% of the total current at the initial moment, but as the detector gradually depletes, it will contribute more than 2%, making it a non-negligible proportion of the total signal current.

Development of Multi-Purpose Satellite II with Deployable Solar Arrays: Part 2. Ground Deployment Experiments (다목적2호기 태양전지판의 전개시스템 개발: PART 2. 지상전개실험)

  • Heo,Seok;Gwak,Mun-Gyu;Kim,Yeong-Gi;Kim,Hong-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.82-87
    • /
    • 2003
  • This research is concerned with ground experiments for satellite solar array deployment as well as the validation of theoretical modeling technique presented in the previous paper. We carried out the experiments on the strain energy hinge with stopper to investigate he buckling characteristics of the SEH, which affects the shape and the speed of the solar array deployment. The moment-angle diagram obtained from the experiments was later combined with the theoretical deployment model. This paper also presents the details of the ground experiments performed at the Korea Aerospace Research Institute(KARI) . It was found that the ground experimental results were in good agreement with the theoretical predictions thus validating the dynamic modeling technique.

Abstraction of the Definition of Engineering Design Ability and its Subdivision and Element by the Survey of Experts' Recognition (전문가 인식 조사에 의한 공학 설계 능력의 정의 및 하위 영역과 요소 도출)

  • Kim, Taehoon
    • Journal of Engineering Education Research
    • /
    • v.18 no.3
    • /
    • pp.24-32
    • /
    • 2015
  • The purpose of this research is to consider theoretical points of view on a preceding research related to an engineering design and abstract the definition of engineering design ability, its subdivision and element on the basis of experts' recognition. To achieve this goal, various literature researches were carried out by examining domestic and foreign articles in journals, lots of dissertations, and books related to engineering design through theoretical consideration. And to secure the validity on the definition of engineering design ability, its subdivision and element through the theoretical study, a feasibility evaluation method by the experts was applied. And the feasibility evaluation of the experts was conducted through 2 stages. The major conclusions of this study are as follows. Firstly, based on the experts' recognition on the definition of engineering design ability, its subdivision and element, which were revised through the 1st feasibility evaluation and then utilized in the 2st one, the validity was confirmed, and the subdivisions of the engineering design ability were divided into 5 and the elements of the subdivision ability were 33. Secondly, the engineering design ability was defined as "the one to design a realizable product with consumers' demand fully satisfying, based on a knowledge application ability, thinking ability, communication ability, problem-solving ability, and teamwork ability to solve engineering problems." Thirdly, the subdivisions of the engineering design ability were divided as a knowledge application ability, thinking ability, communication ability, problem-solving ability, and teamwork ability.

Evaluation of reactor pulse experiments

  • I. Svajger;D. Calic;A. Pungercic;A. Trkov;L. Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1165-1203
    • /
    • 2024
  • In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

High-Frequency Analysis Modeling of Hybrid Vehicle Battery (하이브리드 자동차 배터리의 고주파 해석 모델링)

  • Lee, Jae-Joong;Lee, June-Sang;Kim, Mi-Ro;Kweon, Hyck-Su;Nah, Wan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.263-269
    • /
    • 2012
  • In order to present that the electromagnetic compatibility standards following the frequency goes up which is based automotive electronics, in this paper, a hybrid/electric vehicle battery which reflects the frequency of the equivalent circuit model is introduced. By using this circuit modeling, the impedance characteristics can be analysed and an analyze of battery one cell is finished. Using this model, each different from the discharging situation, the discharge characteristic curve could be led. Basic theoretical approaches and measuring results through MATLAB and experimental validation of the EIS measurement equipment was used.

Design Methods of Intermittent Deep Draw Aeration System for Reservoir Water Quality Management (저수지의 수질 관리를 위한 간헐식 양수통형 인공 순환 장치의 설계 방법 개발)

  • Seo, Dongil;Song, Museok;Hwang, Hyundong;Lee, Eun-hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.445-452
    • /
    • 2004
  • Intermittent deep draw artificial circulation system is one of the most widely used destratification systems to control algal bloom in reservoirs in Korea. However, there have been neither theoretical background of design criteria nor operation guide line for efficient application of the system available for such systems. A design method was developed to calculate required compressor capacity and number of circulation units considering physical interactions between stratified water layers and plumes induced by the intermittent deep draw artificial circulation system. The program was tested with data observed in Yeoncho Lake. The results indicated that the developed method can applied in the fields successfully. Further validation processes would improve design and operation methods.

A Study on the Predictive Current Controller with the Compensation of Computation Time Delay in a Digital Control Systems (디지털 제어 시스템의 연산시간 지연을 고려한 예측전류제어기에 관한 연구)

  • Woo, Myung-Ho;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2028-2032
    • /
    • 1997
  • When a high performance current control is desired, a computation time delay of a digital control system may deteriorate the control performance of a current controller. Such a non-negligible effect can be considerable in transient state. This paper deals with the modified predictive current control that compensates the time delay effects of a conventional predictive current control. The method is closely related to a local average current control and a symmetrical PWM pattern generation. Also some theoretical approaches are presented to describe the voltage saturation boundary of the power converter. For validation, the proposed method is applied to an active power filter system. The experimental results show considerable improvement in current tracking capability.

  • PDF

Leakage and Rotordynamic Analysis of Spiral-Grooved Pump Seal Based on Three-Control-Volume Theory (나선 홈 펌프 실의 누설 및 로터다이내믹 해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.14-22
    • /
    • 2003
  • In this paper the leakage prediction md rotordynamic analysis of an annular seal with a smooth rotor and spiral-grooved stator is performed. For the development of a theoretical model, the three-control-volume analysis of the circumferentially-grooved seal is expanded by considering pressure reduction due to the pumping effect of spiral groove and pressurized flow through the spiral groove. Validation on the present analysis is achieved by comparisons with available experimental data. For the leakage prediction the present analysis generally shows a reasonable agreement with experimental results. Rotordynamic coefficients for rotor speed with spiral angles show same trend, but the magnitudes of rotordynamic coefficients yield differences between analysis and experimental results.