DOI QR코드

DOI QR Code

Evaluation of reactor pulse experiments

  • I. Svajger (Jozef Stefan Institute, Reactor Physics Department) ;
  • D. Calic (Jozef Stefan Institute, Reactor Physics Department) ;
  • A. Pungercic (Jozef Stefan Institute, Reactor Physics Department) ;
  • A. Trkov (Jozef Stefan Institute, Reactor Physics Department) ;
  • L. Snoj (Jozef Stefan Institute, Reactor Physics Department)
  • Received : 2023.07.25
  • Accepted : 2023.11.10
  • Published : 2024.04.25

Abstract

In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

Keywords

Acknowledgement

The authors would like to thank to JSI TRIGA operators (Anze Jazbec, Marko Rosman, Sebastjan Rupnik, Andraz Verdir and former operator Darko Kavsek) for assistance in performing experiments and in colleating and analysing of measured data. The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. (P2-0073), research project no. (NC-0011) and research infrastructure core funding TRIGA Mark II research reactor).

References

  1. http://www.rcp.ijs.si/ric/index-a.htm, 16. June 2020. 
  2. I. Mele, M. Ravnik, A. Trkov, TRIGA mark II benchmark experiment, Part II: pulse operation, Nucl. Technol. 105 (1994) 52-58. 
  3. T. Goricanec, et al., Evaluation of neutron flux and fission rate distributions inside the JSI TRIGA Mark II reactor using multiple in-core fission chambers, Ann. Nucl. Energy 111 (2018). 
  4. Z. Stancar, et al., Computational validation of the fission rate distribution experimental benchmark at the JSI TRIGA Mark II research reactor using the Monte Carlo method, Ann. Nucl. Energy 112 (2018). 
  5. V. Radulovic, et al., Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors, Nucl. Instrum. Methods A (2015) 804. 
  6. K. Ambrozic, et al., Delayed gamma determination at the JSI TRIGA reactor by synchronous measurements with fission and ionization chambers, Nucl. Instrum. Methods A (2018) 911. 
  7. G. Zerovnik, et al., Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers, Appl. Radiat. Isot. 96 (2015). 
  8. http://trigapulse.ijs.si/, 02.03.2022. 
  9. D. Loaiza, D. Gehman, End of an era for the los Alamos critical experiments facility: history of critical assemblies and experiments (1946-2004), Ann. Nucl. Energy 33 (2006) 1339-1359. 
  10. T.F. Wimett, R.H. White, W.R. Stratton, D.P. Wood, Godiva II-An Unmoderated Pulse-Irradiation Reactor, Nuclear Science and Engineering, Los Alamos, 1960. 
  11. B.E. Clancy, J.W. Connolly, B.V. Harrington, An Analysis Of Power Transients Observed In SPERT I Reactors, PART 1 Transients in Aluminium Plate-type Reactors Initiated at Ambient Temperature, 1975. March. 
  12. M.I. Lundin, Health Physics Research Reactor Hazards Summary, UC-80-Reactor Technology (17.Th ed.), 1962. 
  13. D.D. Imholte, F. Aydogan, Comparison of nuclear pulse reactor facilities with reactivity-initiated-acident testing capability, Prog. Nucl. Energy 91 (2016) 310-324. 
  14. R. E. Carter, B. E. Leonard, PULSTAR Fuel, Low Enrichment, Long Lifetime, Economical, Proven, Maryland. 
  15. G. Ritter, O. Gueton, F. Mellier, D. Beretz, Neutron Commissioning in the New CABRI Water Loop Facility, St Paul Lez Durance, France, 2009. 
  16. B.K. Heath, C.C. Race, TREAT Restart Project, Nuclear Technology, vol. 205, 2019, 1396-1377, Idaho, October. 
  17. D. Okrent, C.E. Dickerman, J. Gasidlo, D.M. O'shea, D.F. Schoeberle, The Reactor Kinetics of the Transient Reactor Test Facility (TREAT), AEC Research and Development Report, Chicago, 1960. 
  18. T. R. Schmidt, J. A. Reuscher, Overview of Sandia National Laboratories Pulse Nuclear Reactors. 
  19. A.A. Wasserman, S.O. Johnson, R.E. Heffner, R.S. Kern, A.H. Spano, Power-Burst Facility (PBF) Conceptual Design, AEC Research and Development Report, June, 1963. 
  20. J.W. Weale, H. Goodfellow, M.H. Mctaggart, E.G. Warnke, A new fast pulsed reactor, VIPER, Proceedings of a symposium Karlsruhe 30 (1967) october - 3. November. 
  21. H. Yanagisawa, A. Ohno, Evaluation of power history during power burst experiments in TRACY by combination of gamma-ray and thermal neutron detectors, J. Nucl. Sci. Technol. (2002) 597-602. June. 
  22. T.F. Wimett, Fast Burst Reactors in the U. S. A., New Mexico, 1965. May. 
  23. K.O. Ott, R.J. Neuhold, Introductory Nuclear Reactor Dynamics, American Nuclear Society, Illinois, 1925. 
  24. Z. Stancar, L. Snoj, L. Barbot, Reaction rate distribution Experiments at the slovenian JSI TRIGA mark II research reactor, TRIGA-FUND-RESR-002, in: International Handbook of Evaluated Reactor Physics Benchmark Experiments, Paris: NEA/NSC/DOC(2006)1, OECD NEA, 2017. 
  25. Pregl, Varnostno porocilo za reaktor TRIGA Mark II v, Podgorici (TRIGA Reactor Safety Analysis Report), Revision 7, IJS-DP-10675, Ljubljana, 2017. March. 
  26. A. Trkov, M. Ravnik, H. Wimmer, B. Glumac, H. Boeck, Application of the rod-insertion method for control rod worth measurements in research reactors, Kerntechnik (1995) 255-261. 
  27. V. Merljak, M. Kromar, A. Trkov, Rod insertion method analysis - a methodology update and comparison to boron dilution method. Annals of Nuclear Energy 113 (2018) 96-104. 
  28. J. Leppanen, et al., The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, 2015. 
  29. D. Calic, G. Zerovnik, A. Trkov, L. Snoj, Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments, Appl. Radiat. Isot. 107 (2016) 165-170. 
  30. ICSBEP, PU-MET-FAST-030, in: International Handbook of Evaluated Critical Safety Benchmark Experiments, vol. 6, Idaho Falls, USA, 2006. 
  31. M.B. Chadwick, et al., ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (12) (2006). 
  32. Forrest B. Brown, The Makxsf Code With Doppler Broadening, LA-UR- 06-7002, Los Alamos National laboratory, 2006. 
  33. https://www.iaea.org/publications/7044/wims-d-library-update, 09.08.2021. 
  34. X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, 2004. 
  35. R. Jeraj, M. Ravnik, Triga mark II reactor: U (20)-zirconium hydride fuel rods in water with graphite reactor, ieu-comp-therm-003, in: International Handbook of Evaluated Criticality Safety Benchmark Experiments, vol. 3, NEA/NSC/DOC, 2010. 
  36. B. Kraut, J. Zerovnik, B. Gabrovsek, et al., in: J. Diaci, J. Diaci, M. Kalin, N. Herakovic, C. Arkar, V. Butala (Eds.), Krautov Strojniski Prirocnik. 17. Slovenian Revised Edition, University of Ljubljana, Faculty of mechanical engineering, 2019. 
  37. G. I. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold Company, New York. 
  38. K. Fuchs, Efficiency for Very Slow Assembly, vol. 596, Los Alamos Scientific Laboratory Report LA, 1946. 
  39. G.E. Hansen, Burst Characteristics Associated with the Slow Assembly of Fissionable Materials, Los Alamos Scientific Laboratory Report LA, 1952, p. I441. 
  40. J.D. Lewins, The adiabatic Fuchs-Nordheim model and non-dimensional solutions, Ann. Nucl. Energy 22 (10) (1995). 
  41. G.E. Hansen, Burst Characteristic Associated with the Slow Assembly of Fissionable Materials, LA-1441, Los Alamos Scientific Laboratory, 1952. 
  42. D.L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, Illinois, 1993. 
  43. T.V. Holschuh, W.R. Marcum, Modified Fuchs-Nordheim model for use in reactor pulse measurements, Ann. Nucl. Energy 116 (2018) 314-318. ISSN 0306-4549. 
  44. A. Trkov, L. Snoj, M. Ravnik, Reaktorska in Radiacijska Fizika, study material at Faculty of Mathematics and Physics, Ljubljana, 2013. October. 
  45. https://en.wikipedia.org/wiki/Bernoulli_differential_equation, 10. 06. 2021. 
  46. L. Snoj, A. Kavcic, G. Zerovnik, M. Ravnik, Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo, Ann. Nucl. Energy 2 (2010) 223-229. 
  47. P. Filliatre, C. Jammes, L. Barbot, D. Fourmentel, B. Geslot, I. Lengar, A. Jazbec, L. Snoj, G. Zerovnik, Experimental assessment of the kinetic parameters of the JSI TRIGA reactor, Ann. Nucl. Energy 236-245 (2015). 
  48. R. Henry, L. Snoj, I. Lengar, Calculation of kinetic parameters of the JSI TRIGA reactor with TRIPOLI 4 and MCNP, in: RRFM European Reactor Conference 2014, Ljubljana, Slovenia, 2014, pp. 399-408, 30. March - 3. April. 
  49. R. Henry, I. Tiselj, L. Snoj, Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP, Appl. Radiat. Isot. 140-148 (2015). March. 
  50. M.T. Simnad, The U-ZrHx Alloy, GA, E-177-833, 1980. February. 
  51. M. Ravnik, M. Junlanan, PULSTRI, A Computer Program for Mixed Core TRIGA Reactor Pulse Calculations, OAEP, Bangkok, 1989. September. 
  52. http://www.oecd-nea.org/tools/abstract/detail/iaea1228/, 10 July 2020. 
  53. M. Ravnik, I. Mele, B. Zefran, PULSTRI-1, A Computer Program for TRIGA Reactor Pulse Calculations, IJS-DP-5756, Ljubljana, 1990. January. 
  54. L. Snoj, M. Ravnik, Power Peakings in Mixed TRIGA Cores, Nuclear Engineering and Design: International Journal Devoted to the Thermal, Mechanical and Structural Problems of Nuclear Energy, 2008, pp. 2473-2479. 
  55. A. Pungercic, D. Calic, L. Snoj, Computational burnup analysis of the TRIGA Mark II research reactor fuel, Print ed. Prog. Nucl. Energy 130 (2020). art. 103536, 11 str. ISSN 0149-1970 
  56. A. Persic, T. Zagar, M. Ravnik, S. Slavic, B. Zefran, D. Calic, A. Trkov, G. Zerovnik, A. Jazbec, L. Snoj, TRIGLAV: a program package for TRIGA reactor calculations, Nucl. Eng. Des. 318 (2017) 24-34. 
  57. https://reference.wolfram.com/language/ref/NDSolve.html, 10. June. 2021. 
  58. S. Wolfram, The Mathematica, fourth ed., Cambridge University Press, USA, 1999. 
  59. G.R. Keepin, Physics of Nuclear Kinetics, Addison-Wesley Publishing Company, USA, 1965. 
  60. G.R. Keepin, T.F. Wimett, R.K. Zeigler, Phys. Rev. 107 (1957) 1044. 
  61. A. Trkov, Digital Reactivity Meter DMR-043 (Theory And Methods), IJS-DP-5283-A, Revision 2.
  62. A. Trkov, Digital Reactivity Meter DMR-043 (User's Manual), IJS-Dp5283-B, Revision 2. 
  63. D. Kavsek, Merjenje Moci Jedrskega Reaktorja, Bachelor Thesis of Higher Vocational Education, School center Novo mesto, Higher Vocational College for Electronics, Novo mesto, 2005. December. 
  64. V. Merljak, A. Trkov, Analysis of the Rod Insertion Method for Control Rod Worth Measurement, University of Ljubljana, Faculty of Mathematics and Physics, doctoral dissertation, Ljubljana, 2018. 
  65. A. Trkov, M. Ravnik, H. Wimmer, B. Glumac, H. Boeck, Application of the rod-insertion method for control rod worth measurements in research reactors, Kerntechnik (1995) 255-261. 
  66. V. Merljak, M. Kromar, A. Trkov, Rod insertion method analysis - a methodology update and comparison to boron dilution method. Annals of Nuclear Energy 113 (2018) 96-104. 
  67. 250-kW TRIGA Mark II Reactor Mechanical Maintenance and Operating Manual for the Jozef Stefan Nuclear Institute Ljubljana Yugoslavia, John Hopkins Laboratory for Pure and Applied Science, General Atomic, Division of General dynamics, California, 1965. July. 
  68. J. J Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, 1 edition, WILEY, New York, 1976. 
  69. J.D. Orndoff, Prompt neutron periods of metal critical assemblies, Nucl. Sci. Eng. 2 (1957) 450-460. 
  70. A. Petrovic, M. Ravnik, Physical model of reactor pulse, in: International Conference Nuclear Energy for New Europe (NENE), Portoroz, 2004 september.