• Title/Summary/Keyword: Theoretical optimization

Search Result 426, Processing Time 0.023 seconds

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Energy-Aware Hybrid Cooperative Relaying with Asymmetric Traffic

  • Chen, Jian;Lv, Lu;Geng, Wenjin;Kuo, Yonghong
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.717-726
    • /
    • 2015
  • In this paper, we study an asymmetric two-way relaying network where two source nodes intend to exchange information with the help of multiple relay nodes. A hybrid time-division broadcast relaying scheme with joint relay selection (RS) and power allocation (PA) is proposed to realize energy-efficient transmission. Our scheme is based on the asymmetric level of the two source nodes' target signal-to-noise ratio indexes to minimize the total power consumed by the relay nodes. An optimization model with joint RS and PA is studied here to guarantee hybrid relaying transmissions. Next, with the aid of our proposed intelligent optimization algorithm, which combines a genetic algorithm and a simulated annealing algorithm, the formulated optimization model can be effectively solved. Theoretical analyses and numerical results verify that our proposed hybrid relaying scheme can substantially reduce the total power consumption of relays under a traffic asymmetric scenario; meanwhile, the proposed intelligent optimization algorithm can eventually converge to a better solution.

Evaluation of Elastic Properties of Anisotropic Cylindrical Tubes Using an Ultrasonic Resonance Scattering Spectroscopy

  • Kim, Jin-Yeon;Li, Zheng
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.548-557
    • /
    • 2010
  • An ultrasonic resonance scattering spectroscopy technique is developed and applied for reconstructing elastic constants of a transversely isotropic cylindrical component. Immersion ultrasonic measurements are performed on tube samples made from a boron/aluminum composite material to obtain resonance frequencies and dispersion curves of different guided wave modes propagating in the tube. Theoretical analysis on the acoustic resonance scattering from a transversely isotropic cylindrical tube is also performed, from which complete backscattering and resonance scattering spectra and theoretical dispersion curves are calculated. A sensitive change of the dispersion curves to the elastic properties of the composite tube is observed for both normal and oblique incidences; this is exploited for a systematic evaluation of damage and elastic constants of the composite tube samples. The elastic constants of two boron/aluminum composite tube samples manufactured under different conditions are reconstructed through an optimization procedure in which the residual between the experimental and theoretical phase velocities (dispersion curves) is minimized.

Leuconostoc mesenteroides NRRL B-1149를 이용한 Mannitol 생산

  • Kim, Chang-Yong;Jo, Gap-Su;Ryu, Hwa-Ja;Lee, Gwang-Ok;Lee, Jin-Ha;Kim, Do-Won;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.177-179
    • /
    • 2002
  • The process for the production of mannitol with fructose (5% to 25%) using Leuconostoc mesenteroides NRRL B-1149 was investigated. Optimization study for mannitol production was carried out in 8 liter batch or fed-batch cultures at $28^{\circ}C$, pH 5.0, without aeration. When 5% fructose was used in a batch culture fermentation, the yield of mannitol was 78% of theoretical. As the concentration of fructose was increased to 10% in a batch culture, the yield was reduced to 59.6% of theoretical. Using a fed-batch fermentation with 10% fructose, the yield was increased to 81.9%. When 15% fructose was used for a fed batch fermentation 5% fructose was initially added and the last 10% fructose was supplied continuously. The final yield of mannitol was 83.71% of theoretical. When 20% fructose was used, the yield was more higher, 89.48%.

  • PDF

A study on the Theoretical of Three Dimensional Cutting Force Used Energy Method (에너지 방법을 이용한 삼차원 절삭력의 이론적 여측에 관한 연구)

  • Kim, Jang-Hvung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.95-105
    • /
    • 1984
  • The purpose of this paper is to predict the cutting force, utilizing new model of double cutting edge which has normal rake angle and tool inclination angle. Changing side, back rake angle and side cutting edge angle in the new model. Three dimensional cutting force was obtained by the use of .eta. /c=i proposed by Stabler and energy method for three dimen- sional cutting force. Theoretical results has been calculated with development of optimization algorism which can be put into three dimensional theory, using the method of least square with orthogonal cutting data. IT is proved that three dimensional cutting force is to be predicted accurately only if orthogonal cutting force by equalizing theoretical result and experimental result has been calculated.

  • PDF

Finite Elements Adding and Removing Method for Two-Dimensional Shape Optimal Design

  • Lim, Kyoung-Ho;John W. Bull;Kim, Hyun-Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2001
  • A simple procedure to add and remove material simultaneously along the boundary is developed to optimize the shape of a two dimensional elastic problems and to minimize the maximum von Mises stress. The results for the two dimensional infinite plate with a hole, are close to the theoretical results of an elliptical boundary and the stress concentration is reduced by half for the fillet problem. The proposed shape optimization method, when compared with existing derivative based shape optimization methods has many features such as simplicity, applicability, flexibility, computational efficiency and a much better control on stresses on the design boundary.

  • PDF

A Study on the Optimization of Shape of Weld Joints (熔接이음부의 形象 最適化에 關한 硏究)

  • ;;Bang, H. S.;Kim, J. M.
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.70-77
    • /
    • 1997
  • Welding is one of the most important and popular joining techniques employed in structures. In spite of, weld designs depend on the rules and regulations. Moreover, the study to optimize a shape of welding joint not may be sufficient and systematic on the theoretical and experimental sides. Therefore, in this study, a computer program based on thermal elasto plastic theory is developed for optimizing(minimizing) shape of weld joints. By the results, study is made on the characteristics of the distributions of welding residual stresses and plastic strains, and their production mechanisms. Also, Various kinds of tests are carried out to find out mechanical characteristics due to shape of weld joints. As a result of this optimization(minimization) of weld joints, the productivity and the reliability will be improved.

  • PDF

Novel Mesh Regeneration Method Using the Structural Deformation Analysis for 3D Shape Optimization of Electromagnetic Device (전자소자의 3차원 형상최적화를 위한 구조변형 해석을 이용한 새로운 요소망 변형법)

  • Yao Yingying;Jae Seop Ryu;Chang Seop Koh;Dexin Xie
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.247-253
    • /
    • 2003
  • A novel finite element mesh regeneration method is presented for 3D shape optimization of electromagnetic devices. The method has its theoretical basis in the structural deformation of an elastic body. When the shape of the electromagnetic devices changes during the optimization process, a proper 3D finite element mesh can be easily obtained using the method from the initial mesh. For real engineering problems, the method guarantees a smooth shape with proper mesh quality, and maintains the same mesh topology as the initial mesh. Application of the optimum design of an electromagnetic shielding plate shows the effectiveness of the presented method.

Design of BAM using an Optimization approach (최적화기법을 이용한 BAM의 설계)

  • 권철희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.161-167
    • /
    • 2000
  • In this paper, we propose a design method for BAMs(bidirectiona1 associative memories) which can perform the function of bidirectional association efficiently. Based on the theoretical investigation about the properties of BAMs, we first formulate the problem of finding a BAM that can store the given pattern pairs as stable states with high error correction ratio in the form of a constrained optimization problem. Next, we transform the constrained optimization problem into a GEVP(genera1ized eigenvalue problem), which can be solved by recently developed interior point methods. The applicability of the proposed method is illustrated via design examples.

  • PDF

Optimum Design of Process Conditions to Minimize Residual Stress and Birefringence in Injection -Molded Parts

  • Sejin Han;Huh, Yong-Jeong;Kang, Shin-il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.17-25
    • /
    • 2001
  • In this paper, a theoretical study has been made to reduce the residual stress and birefringence in the injection-molded parts. An optimization program has been used to minimize the residual stresses and birefringence calculated from a simulation program. The thermally induced stress has been calculated using a linear viscoelasticity model. The flow stress and birefringence has been calculated using the Leonov's viscoelasticity model. This has been applied to the injection molding of a circular disc and a plate. the optimization has been done either by changing process variables while maintaining the mold temperature constant or by varying the mold-wall temperature with time. This study shows the significant reduction in residual stress and birefringence is possible through the optimization of processing conditions.

  • PDF