• Title/Summary/Keyword: Theoretical Equation

Search Result 1,664, Processing Time 0.061 seconds

Effect of the Vibration Modes on the Radiation Sound for Plate (강판의 진동모드를 고려한 방사음 예측에 관한 연구)

  • Kim Chang-Nam;Byun Young-Su;Kim Jeong-Man;Kim Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • In order to compute the radiated sound from a vibrating structure, the Rayleigh's integral equation has to be derived from the Helmholtz equation using Green's function. Generally, the surface velocity in the Rayleigh's integral equation uses the root mean square(rms) velocity. The calculation value is too large, because it's not considered cancelation. On the other hand. using the complex velocity, the sound pressure is calculated too small, because it considers that sound is perfectly canceled out. Therefore, this thesis proposes a correction factor(CF) which considers vibration modes and the method by which to calculate the radiating sound pressure. The theoretical results are compared with the experimental values, and the proposed method can be verified with confluence.

Calculation of the air ratio in the case of firing gaseous fuels containing incombustibles

  • Cho, Kil-Won;Kunwoo Han;Park, Heung-Soo;Lee, Yong-Kuk;Lee, Kun-Hong
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • A short-cut equation for the calculation of the air ratio in the case of firing gases containing incombustibles has been derived on the basis of mass balances. The new equation requires the oxygen concentration and the amount of carbon dioxide in the combustion gas, theoretical oxygen and air requirements, and the content of incombustibles other than carbon dioxide in the fuel for the air ratio calculation. By using the equation, a theoretically correct calculation of the air ratio has been enabled.

  • PDF

Diffusion Coefficients for Electrons in SF6-Ar Gas Mixtures by MCS-BEq (MCSBEq에 의한 SF6-Ar혼합기체의 확산계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.125-129
    • /
    • 2015
  • Energy distribution function for electrons in SF6-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and a Monte Carlo Simulation using a set of electron cross sections determined by other authors experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$ mixtures were measured by time-of-flight(TOF) method, The results show that the deduced longitudinal diffusion coefficients and transverse diffusion coefficients agree reasonably well with theoretical for a rang of E/N values. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.

Friction Effects on the Performance of Air Foil Bearings (공기포일베어링의 성능에 미치는 범프마찰효과)

  • Kim Young-Cheol;Lee Dong-Hyun;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.283-288
    • /
    • 2005
  • This paper presents the theoretical model and analysis results to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Vertical and horizontal deflection of a bump is restricted by friction of the bump. Equivalent viscous damping of the bump foil is derived from the Coulomb friction. Dynamic equation of the bump is constituted by stiffness and damping terms. The air film is modeled by the compressible Reynolds equation. A perturbation approach and finite difference numerical method is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by the bump friction.

Theoretical Study on the Consolidation Behavior and Mechanical Property for Molybdenum Powders (몰리브데늄 분말의 치밀화 거동 및 기계적 물성의 이론적 연구)

  • Kim, Young-Moo
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • In this study, consolidation behavior and hardness of commercially available molybdenum powder were investigated. In order to analyze compaction response of the powders, the elastoplastic constitutive equation based on the yield function by Shima and Oyane was applied to predict the compact density under uniaxial pressure from 100MPa to 700MPa. The compacts were sintered at $1400-1600^{\circ}C$ for 20-60 min. The sintered density and grain size of molybdenum were increased with increasing the compacting pressure and processing temperature and time. The constitutive equation, proposed by Kwon and Kim, was applied to simulate the creep densification rate and grain growth of molybdenum powder compacts. The calculated results were compared with experimental data for the powders. The effects of the porosity and grain size on the hardness of the specimens were explained based on the modified plasticity theory of porous material and Hall-Petch type equation.

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

The Structural Equation Modeling in MIS : The Perspectives of Lisrel and PLS Applications (경영정보학 분야의 구조방정식모형 적용분석 : Lisrel과 PLS 방법을 중심으로)

  • Kim, In-Jai;Min, Geum-Young;Shim, Hyoung-Seop
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.203-221
    • /
    • 2011
  • The purpose of this study is to investigate the applications of Structural Equation Modeling(SEM) into MIS area in recent years. Two methodologies, Lisrel and PLS, are adopted for the method comparison. A research model, based upon TAM(Technology Acceptance Model) is used for the analysis of the data set of a previous study. The research model includes six research variables that are composed of twenty-eight question items. 272 data are used for data analyses through Lisrel v.8.72 and Visual PLS v.1.04. This study shows the statistical results of Lisrel are the same to those of PLS. The contribution of this study can be suggested as the followings; (1) A theoretical comparison of two methodologies is shown, (2) A statistical analysis is done at a real-situated data set, and (3) Several implications are suggested.

The Breakdown Phenomena of N2 gas by RF Electric Field (라디오 주파수전계에 의한 질소가스의 브레이크 다운 현상)

  • 황기웅;노영수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.199-204
    • /
    • 1986
  • The breakdown phenomena of N2 gas by 13.56MHz electric field are very different from those under steady field. In this paper we analyzed the breakdown phenomena by using electron distribution function and diffusion equation. The second-order differential equation derived from the Boltzmann equation is solved for the electron distribution function. The ionization rate and diffusion coefficient are calculated using kinetic theory formulas. The breakdown condition is that the number of electrons produced by ionization equal the number diffusing to the walls of the discharge chamber. Theses theoretical breakdown electric fields are calculated by the computer and compared with the experimental values.

  • PDF

An Analytical Model of Corona Discharge Plasmas in Coaxial Cylindrical Reactor (동축 원통형 코로나 방전 플라즈마의 해석적 모델)

  • 고욱희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.157-161
    • /
    • 2004
  • We present a simple analytical expression of plasma density by making use of the electron density equation to study the dynamic behavior of the corona discharge plasma. It assumes that a specified voltage profile is fed through the inner conductor of the reactor chamber consisting of two coaxial conducting cylinders. The analytical description is based on the electron continuity equation with ionization and attachment by electrons. It is found that the electron density profile calculated between two coaxial cylindrical electrodes depends very sensitively on the Profile of applied voltage. The analytical expression of plasma density and its generation will provide important scaling laws in the corona discharge plasma.