International journal of advanced smart convergence
/
제4권1호
/
pp.1-10
/
2015
Automotive Theft has been an obstinate problem around the world. Design and manufacture of anti-theft systems have become more and more complex due to the rise in complexity of theft in the system. Most of the anti-theft systems available in the market, are the alarm types which audibly deter some thieves away but do not prevent one's car from being stolen and even are not good enough to meet the growing complexity of theft in the country. This paper presents a simple and an efficient anti-theft system which provides improved security by the use of efficient access mechanisms and immobilization systems. This security system can immobilise an automobile and its key auto systems through remote control when it is stolen. It hence deters thieves from committing the theft. It also effectively prevents stealing of key auto systems for reselling by introducing four layers of security features written in the form of firmware and embedded on the Electronic Control Units (ECUs). The particulars of system design and operation are defined in the paper. The experimental outcomes show that this system is practicable and the owner can steadily control his vehicle within a few seconds.
온라인상에서 사용자의 개인정보를 불법적으로 취득, 악용하는 계정도용 문제는 금전적인 이득을 얻을 수 있는 MMORPG(Massively Multi-player Online Role Playing Games)에서 특히 빈번하게 발생하고 있다. 많은 사람들이 게임을 이용하여 심각한 피해로 이어질 수 있기 때문에 이에 대한 대책마련이 시급함에도 불구하고, 이를 예방하거나 탐지하는 기법에 대한 연구가 많이 부족한 실정이다. 본 연구에서는 온라인게임에서 발생했던 실제 계정도용 사례 분석을 통해 계정도용의 유형을 체계적으로 정의하고, 유형별로 계정도용을 분류하는 자동화된 탐지모델을 제안한다. 실 계정도용 사례를 분석한 결과 속전속결형, 신중형, 대담무쌍형의 3가지로 구분되었으며 이 분류 체계와 탐지모델을 국내 주요 온라인게임회사 중 한 곳에 적용하였다. 본 연구에서 제시한 유형별 탐지모델은 해킹의 유무만을 판정하던 기존의 모델보다 탐지에 있어서 향상된 성능을 보였다.
In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.
In this paper, we propose a classification and theft detection system for human and livestock for various moving objects in a barn. To do this, first, we extract the moving objects using the GMM method. Second, the noise generated when extracting the moving object is removed, and the moving object is recognized through the labeling method. And we propose a method to classify human and livestock using model formation and color for the unique form of the detected moving object. In addition, we propose a method of tracking and overlapping the classified moving objects using Kalman filter. Through this overlap determination method, an event notifying a dangerous situation is generated and a theft determination system is constructed. Finally, we demonstrate the feasibility and applicability of the proposed system through several experiments.
개인정보가 대량으로 유출되는 사고가 최근 몇 년에 걸쳐 지속적으로 발생하고 있다. 이렇게 외부로 유출된 대량의 개인정보는 명의도용 및 계정도용에 불법적으로 사용되고 있다. 특히 온라인 게임머니 게임아이템 등의 가상의 재화를 현금으로 거래할 수 있는 온라인 게임서비스에서 다수 발생하고 있다. 온라인 게임에서 발생하고 있는 도용 사례를 분석해 보면 몇 가지 특징을 확인 할 수 있는데, 요약해 보면 짧은 시간에 대량으로 발생한다는 것이다. 본 연구에서는 온라인 게임에서 발생하고 있는 도용 공격 사례를 통해 대량의 자동화된 계정 도용 공격의 특징을 정의하고 실시간으로 대응할 수 있는 탐지 및 차단 방안을 제안 하였다.
The growth in number and capacity of smart devices such as GPS enabled smart phones and PDAs present an unparalleled opportunity for diverse areas of life. In this paper we propose an approach for vehicle theft protection using GPS based trajectory anomaly detection. The detailed methodology of the proposed system is briefly described in this paper.
본 논문에서는 YOLO 인공 지능 플랫폼을 이용하는 이상행동 감시 시스템을 구현하였으며, YOLO 시스템의 one-shot 감지 시스템 사용으로 기존 감시 시스템에 비해 우수한 응답 특성을 갖는다. YOLO 인공 플랫폼은 폭행, 절도, 방화와 같은 이상행동들로 구성된 이미지 세트로 학습되었다. 이상행동 감시 시스템은 서버와 클라이언트로 구성되어 있으며, 상용화될 경우 각종 범죄 문제를 풀기 위해 스마트시티에 적용이 가능하다.
공항 경비보안은 공항의 시설 및 자산을 도난, 범죄 등으로부터 예방하기 위하여 살피고 지키는 활동이다. 이러한 활동을 효율적으로 할 수 있도록 지원하는 시스템을 보안시스템이라 할 수 있다. 보안시스템은 보안센터시스템, CCTV시스템, 출입통제 시스템, 침입감지시스템, 경비통신시스템, 경고방송시스템, 보안네트워크시스템, 외곽침입감지시스템, 검색시스템 및 정보보안시스템이 있으며 이에 대하여 살펴보고자 한다.
전력 그리드 시스템이 ICT 기술의 발달로 지능화됨에 따라 그리드에 연결된 사용자의 전력 사용량 정보를 획득하고 분석할 수 있게 되었다. 본 논문에서는 스마트 그리드에서 경제적 손실을 일으키는 주된 원인인 에너지 절도 문제를 특징 선택과 서포트 벡터 머신을 이용해서 해결한다. 본 논문에서 제안하는 시스템의 데이터 전처리 과정은 다섯 단계다. 전처리 단계에서 필터링 기반 특징 선택 방법인 분산 분석 기반 방식과 상호의존정보 기반 방식을 활용해 특징을 선택한다. 시뮬레이션 결과 입력 데이터의 특징을 그대로 이용하는 것보다 상호의존정보 기반 특징 선택을 이용하면 적은 입력 특징을 이용해 서포트 벡터 머신 기반 분류기로부터 더 높은 분류 성능을 얻어 낼 수 있다.
Sara Alqethami;Badriah Almutanni;Walla Aleidarousr
International Journal of Computer Science & Network Security
/
제24권4호
/
pp.1-10
/
2024
In the era of big data, the growth of e-commerce transactions brings forth both opportunities and risks, including the threat of data theft and fraud. To address these challenges, an automated real-time fraud detection system leveraging machine learning was developed. Four algorithms (Decision Tree, Naïve Bayes, XGBoost, and Neural Network) underwent comparison using a dataset from a clothing website that encompassed both legitimate and fraudulent transactions. The dataset exhibited an imbalance, with 9.3% representing fraud and 90.07% legitimate transactions. Performance evaluation metrics, including Recall, Precision, F1 Score, and AUC ROC, were employed to assess the effectiveness of each algorithm. XGBoost emerged as the top-performing model, achieving an impressive accuracy score of 95.85%. The proposed system proves to be a robust defense mechanism against fraudulent activities in e-commerce, thereby enhancing security and instilling trust in online transactions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.