• Title/Summary/Keyword: The will to Power

Search Result 6,129, Processing Time 0.037 seconds

Design and Process Development in High Voltage Insulated Gate Bipolar Transistors (IGBTs)

  • Kim, Su-Seong
    • The Magazine of the IEIE
    • /
    • v.35 no.7
    • /
    • pp.57-71
    • /
    • 2008
  • The last decade has witnessed great improvements in power semiconductor devices thanks to the advanced design and process, which have made it possible to significantly improve the electrical performances of electronic systems while simultaneously reducing their site, weight and perhaps most importantly reducing their cost. Among the power semiconductor devices, IGBT will be a key semiconductor component for power industry since it has a huge potential to cover large areas of power electronics from small home appliances to heavy industries. Currently, only a few limited power semiconductor manufacturers supply most of the industrial consumptions of power IGBT and its modules. Therefore, a large portion of technology in the power industry is dependent on other advanced countries. In this regard, to independently build power IGBT devices and the relevant power module technology, Korean government initiated a new 5-year project 'Power IT,' which also aimed at booming the business of the power semiconductor and the allied industries. With the success of this power IT project, it is expected that the power semiconductor technology will be a basis to foster the high power semiconductor industry and moreover, there will be more innovative developments in the Korea region and globally Also, forming the channel between the customers and suppliers, it is possible to effectively develop the customized power products, which could strengthen the competitiveness of Korean power industry. Furthermore, the power industry including semiconductor manufacturers will be technologically self-supporting and be able to obtain good business opportunities, and eventually increase the share in the growing power semiconductor market, which could be positioned as a major industry in Korea.

  • PDF

Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

  • Choi, Won-Jun;Roh, Myung-Sub;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.525-533
    • /
    • 2017
  • A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

Polarization in the Gaming Industry: The dystopian model

  • Hwang, Jin Ha;Yoon, Young Doo
    • The Magazine of Kiice
    • /
    • v.17 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • What will the gaming industry look like in the future? Where is it heading? Most producers, developers, and gamers have been pondering such questions since the very beginning of video games. This paper asserts that the current trend in video games to emphasize rationalization will, in time, bring about an extreme polarization within the game industry. Each year the barriers to entry are becoming lower and the size of the game market is growing, which will bring about an emphasis on who has the power to be recognized in the industry. This paper argues that such trends will, in turn, lead to a power play in which the winner will always be the player with the most monetary power. In time, this prolonged power play is expected to bring about what this discussion refers to as a dystopian model within the game industry.

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs (파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구)

  • Kim, Eung-Seok;Kim, Young-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

An Analysis of Congestion Cost for Electric Power Transmission in Consideration of Uncertainty of Future Electric Power System (미래 전력 계통의 불확실성을 고려한 송전혼잡비용 분석)

  • Park, Sung Min;Kim, Sung Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • It is expected that there will be delay of scheduled transmission network reinforcement and huge investment of renewable energy resources in Korea. As transmission capacity expansion delayed, supplying power to Seoul metropolitan area will not be increased as scheduled. In addition, uncertain renewable energy out of Seoul metropolitan area can cause transmission congestion in the future power system. These two combining effects will make the difference in locational marginal prices(LMP) and congestion costs increase. In that sense, this paper will analyze how much the congestion costs for Korea power system are incurred in the future power system. Most of previous approaches to analyze the congestion costs for electric power system are based on the optimal power flow model which cannot deal with hourly variation of power system. However, this study attempted to perform the analysis using market simulation model(M-Core) which has the capability of analyzing the hourly power generation cost and power transmission capacity, and market prices by region. As a result, we can estimate the congestion costs of future power system considering the uncertainty of renewable energy and transmission capacity.

Electrical Modeling of Piezoelectric Elements and Efficient Driving Method

  • Park, Dongjin;Kim, Jintae;Lee, Youngsik;Koo, Gwanbon;Park, Youngbae
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.49-50
    • /
    • 2015
  • Piezoelectric elements are one of good candidates able to replace motors in various electronics devices. It is slim and compact and low power consumption compare to motors. Linear regulator or class-D amplifier are generally used for piezoelectric element driver, however, suffers from severe power consumption. In this paper, electrical modeling of piezoelectric element will be presented and switching losses on the driver due to the parasitic capacitance will be analyzed. And new ZVS full bridge converter with an inductor will be proposed so as to reduce the power losses.

  • PDF

A Study on Rail Transport Method by the Construction Plan of Samcheok Electric Power Complex (삼척발전단지 건설계획에 따른 철도수송력 강화 방안 연구)

  • Cho, Chi-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1327-1334
    • /
    • 2009
  • According to the construction plan of Samcheok electric power complex from year 2009 to year 2020, many people are interested in this area. This national project which invests about 8.6 trillion won will have great influence to rail transport considering current depression days. Samcheok electric power complex will be the largest plan in Korea, and it is necessary to have railroad construction plan as soon as possible considering the route change of domestic coal transport and the possibility of coal transport by rail from North Korea, Russia and China after reunification of Korean peninsula. Also, Samcheok electric power complex will be located in the east area railroad route and it is important to study about this area. This study will mention about the railroad route of east sea north line and Pohang $\sim$ Samcheok line, and review the prospect and strengthening method of coal transport by railroad according to the construction of Samcheok electric power complex.

  • PDF

STATCOM Helps to Guarantee a Stable System

  • Andersen, B.R;Gemmell, B.D.;Horwill, C.;Hanson, D.J.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.65-70
    • /
    • 2001
  • Transmission System Operators are governed by operational security standards that are applied in real time. During system disturbances, the System Operators must rely on the installed protection and control equipment, prior to human intervention. New power electronic solutions bring rapid and repeatable responses to disturbances, which will help System Operators to guarantee a stable system. Last year, Alstom completed the world's first competitively bid STATCOM to support the voltage on National Grid's 400kV network that supplies London and the Southeast from the north of the UK. It is rated ${\pm}75MVAr$ and forms part of a Static Var System (SVS) with a total rating of 0 to 225MVAr. This paper will describe the reasons for its size, location, its chain-link configuration and give examples of its operating performance. The paper will also describe the features that allow this STATCOM to deliver much more than reactive compensation in support of a wider transmission service objective, as system conditions require.

  • PDF

A Study on the Effect of Distributed Generation of the Reconfiguration of Distribution Networks

  • Nguyen, Tung Linh;Trinh, Trong Chuong;Truong, Viet Anh
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1435-1441
    • /
    • 2017
  • Distributed generation (DG) in the future will play an important role in the electricity supply systems, in wich can provide DG capacity from a few hundred kW to tens of MW. However, it is connected to the local power grid, DG will have certain influence on the power quality of the power grid. One of the most significant effects is that they will change the configuration of the local power grid as well as affecting the operation mode of the grid. This paper presents a method of finding the optimal open loop, analyzing and selecting the appropriate mode of operation to reduce power losses of power distribution networks that includes DG.