• 제목/요약/키워드: The surface hardness

검색결과 2,499건 처리시간 0.031초

레이저빔 조사에 의한 압력용기용 강의 피로강도 향상방법 개발 (Fatigue Strength Improvement of Pressure Vessel Steel by Lasler Beam Radiation)

  • 권재도;진영준;김상태;최선호
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.519-528
    • /
    • 1994
  • Degradation problem due to long term service in machine or structure is now one of important problems in whole industrial field. In this study, pressure vessel steel, Cr-Mo steel, which was used more than 60,000 hours, was surface-modified by laser beam radiation for the improvement of fatigue strength. To find out optimum radiation condition, hardness, residual stress measurement and fatigue tests were carried out with the specimen of different radiation conditions. Experimental results show that micro-hardness values on the surface of the radiated specimens were approximately 2.2 times higher than those of un-radiated ones. In the depth direction of the specimen, hardness on the surface showed maximum value and was decreased at the inside the specimen. Different hardness values are due to the energy density Q which was absorbed by the specimen. Fatigue tests show that fatigue life was improved by the compressive residual stress after laser beam radiation. However, some specimens with differednt conditions show the shorter fatigue life. It means that laser beam radiation with optimum parameter can improve thae fatigue strength.

Development of Wear-Resistant Sliding Parts Material

  • Shioiri, Hironori;Uemoto, Keiichi;Motooka, Naoki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.116-117
    • /
    • 2006
  • Conventional high-speed steels, which are carbide decentralized materials, are used for sliding parts, but they lack sufficient hardness for some applications. Improvement of surface hardness is possible for high-Cr steels through nitriding. However, nitriding P/M parts is not advisable without sealing the porosity before treatment, as they will become brittle. However, it is difficult to seal the pores with steam treatment, because high-Cr steel has a passive film on the surface. Controlling nitriding by decreasing the amount of oxygen on the surface to be nitrided, and grinding to decrease the porosity of the surface, makes it possible to produce a material that has reasonable and sufficient hardness in the required areas.

  • PDF

도재소부용 금합금의 열처리에 따른 기계적 성질 및 미세조직 변화에 관한 연구 (A Study on Changes of Mechanical Properties and Microstructure in Porcelain Fused to Gold Alloys by Heat Treatment)

  • 남상용;곽동주;차성수
    • 대한치과기공학회지
    • /
    • 제31권4호
    • /
    • pp.9-15
    • /
    • 2009
  • The purpose of this study was to observe the change of mechanical property and microstructure in porcelain fused to gold alloy by heat treatment. PFG alloys are composed with Au-Pd-Ag alloy of the additional elements with indium, tin and copper. Specimens were tested in hardness using vicker,s micro-hardness tester and the surface micro structural changes were analysed by SEM and EDS. The results were as fellows: 1. The vickers hardness showed highest in Au-Pd-Ag alloy of the additional element with tin. 2. By hardening-oxiding result, the vicker,s hardness increased in additional element with tin but there was no significant difference in additional elements with indium and copper. 3. The surface oxide layer of Au-Pd-Ag alloy with added indium and tin increased but there was small change in additional element with copper. 4. The elements of indium and tin increased with increasing heat treatment in the surface alloy.

  • PDF

무전해법으로 Slide Glass 위에 도금된 Ni층의 접착력에 미치는 열처리의 영향 (Effect of Heat Treatment on the Adhesive Strength of Electoless Nickel Deposits)

  • 현영민;유성렬;윤정윤;김보영;김선지;탁송희;김희산
    • 한국표면공학회지
    • /
    • 제44권6호
    • /
    • pp.246-249
    • /
    • 2011
  • Surface modification before coating nickel by coupling agents and/or etchant of glass did not provide enough adhesive strength of electroless nickel deposits on glass. Effect of heat treatments on hardness as well as adhesion of nickel deposits was studied by using tape test for adhesion, nanoindenter for hardness and glancing angle x-ray diffractometer (GAXRD) for phase characterization. Heat treatment improved hardness as well as adhesion. XRD results give that the improvements of adhesion and hardness are due to the formation of $NiSiO_4$ around the interface between the nickel deposits and the glass and the precipitation of $Ni_3P$ causing precipitation hardening, respectively. The details in effects of heat treatment on adhesion and hardness are described here.

광중합(光重合) 활택 경화제가 아크릴 레진 표면에 미치는 물리적 성질에 관한 연구 (A STUDY ON THE EFFECT OF PERMA CURE SYSTEM ON THE PHYSICAL PROPERTIES OF ACRYLIC RESIN SURFACES)

  • 배정식;이호용;정문규
    • 대한치과보철학회지
    • /
    • 제23권1호
    • /
    • pp.155-164
    • /
    • 1985
  • Acrylic resin has some disadvantages in its physical properties such as a low surface hardness, being easily abraded as well as low degree of impact resistance. To overcome these disavantages, Perma Cure System was introduced in 1981, in which photo polymerizing monomers coated on acrylic resin surface were polymerized. In this study, to observe the effect of Perma Cure System on physical properties of treated surface of different types of acrylic resin, abrasion resistance, surface hardness and surface roughness of 4 different types of resin (Premium, Ortho-jet acrylic, Quick resin, Thermo jel) were tested before and after coating treatment. The conclusions arised from this study are as follows; 1. In all types of resin, the abrasion resistance of coated specimen was higher than that of uncoated specimen, and there was difference in amount of abrasion among the types of coated resin. 2. In all types of resin, the surface hardness of coated specimen was higher than that of uncoated specimen, and there was no difference in surface hardness among the types of coated resin. 3. In all types of resin, surface roughness of coated specimen was lower than that of uncoated specimen, and was different according to the degree of surface roughness before coating treatment in same sort of resin specimen.

  • PDF

나노인덴테이션과 주사탐침현미경을 이용한 박막 재료의 특성평가 (Characterization of Thin Film Materials by Nanoindentation and Scanning Probe Microscopy)

  • 김봉섭;윤존도;김종국
    • 한국재료학회지
    • /
    • 제13권9호
    • /
    • pp.606-612
    • /
    • 2003
  • Surface and mechanical properties of thin films with submicron thickness was characterized by nanoindentation with Berkovich and Vickers tips, and scanning probe microscopy. Nanoindention was made in a depth range of 15 to 200 nm from the surface by applying tiny force in a range from 150 to $9,000 \mu$N. Stiffness, contact area, hardness, and elastic modulus were determined from the force-displacement curve obtained. Reliability was first tested by using fused quartz, a standard sample. Elastic modulus and hardness values of fused quartz measured were the same as those reported in the literature within two percent of error. Mechanical properties of ITO thin film were characterized in a depth range of 15∼200nm. As indentation depth increased, elastic modulus and hardness decreased by substrate effect. Ion beam deposited DLC thin films were indented in a depth range of 40∼50 nm. The results showed that the DLC thin film using benzene and bias voltage 0∼-50 V has elastic modulus and hardness value of 132 and 18 GPa respectively. Pure DLC thin films showed roughnesses lower than 0.25 nm, but silicon-added DLC thin films showed much higher roughness values, and the wavy surface morphology.

Surface Morphology, Microstructure and Mechanical Properties of Thin Ag Films

  • Shugurov, Artur;Panin, Alexey;Chun, Hui-Gon;Oskomov, Konstantin
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.190-194
    • /
    • 2003
  • Thin Ag films deposited onto $SiO_2/Si$ substrates by DC magnetron sputtering and thereafter annealed ,it temperatures 100-50$0^{\circ}C$ are investigated by scanning tunneling and atomic forte microscopy. It is shown that the film surface topography and microstructure are considerably changed as a result of annealing. To provide a quantitative estimation of the surface topography changes of Ag films the surface fractal dimension was calculated. Elasticity and hardness of the films are studied by a nanoindentation technique. The films are found to have value of elastic modulus close to that of bulk silver while their hardness and yield stress are essentially higher.

SLS 공정을 이용한 Fe-Cr 분말의 적층에 관한 연구 (Characterization for selective laser sintered Fe-Cr powder)

  • 손영명;장정환;주병돈;성민영;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.282-285
    • /
    • 2009
  • Selective laser sintering (SLS) is a fast growing process of rapid production fur metallic based parts. To restore damaged mold surface using SLS, single layer experiments of $20{\mu}m$ Fe-Cr powder was performed under various heat input. Process window of $20{\mu}m$ Fe-Cr powder provided feasible process parameters for the smooth regular surface. To estimate coherence between melted powder and basematal, tendency of hardness distribution has been observed. Hardness of melted zone and remelted zone was diversified from 5GPa to 6.5GPa. It is over 2 times compared of hardness of basemetal. Average surface roughness of each direction on surface of melted powder was measured. Experimental results show that the mold restoring process using SLS can be successfully applied in the mold repair industry.

  • PDF

자동차용 냉각기 고무호스의 노화거동과 미소경도분석 (Degradation Behavior and Micro-Hardness Analysis of a Coolant Rubber Hose for Automotive Radiator)

  • 곽승범;신세문;신외기;최낙삼
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.915-923
    • /
    • 2007
  • Rubber hoses for automobile radiators are apt to be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature increased. On account of the penetration of coolant liquid into the skin part influenced by the electro-chemical degradation(ECD) test the weight of the rubber hose increased, whereas their failure strain and IRHD hardness decreased. The hardness of the hose in the side of the negative pole was the most deteriorated at the test site of the hose skin just below the coolant surface.

HVOF 용사 건의 이동속도가 WC-Co 코팅층의 두께 형성 및 표면 특성에 미치는 영향 (Effect of Gun Nozzle Movement Speed in HVOF Process on the properties of Coating Thickness and Surface)

  • 김기범;김갑배;정종민;김권후
    • 열처리공학회지
    • /
    • 제35권5호
    • /
    • pp.262-269
    • /
    • 2022
  • In order to process materials such as engineering plastics, which are difficult to mold due to their high strength compared to conventional polymer materials, it is necessary to improve the hardness and strength of parts such as screws and barrels of injection equipment in extrusion system. High-velocity oxygen fuel (HVOF) process is well known for its contribution on enhancement of surface properties. Thus in this study, using the HVOF process, WC coating layers of different thicknesses were bonded to the surface of S30C substrate by controlling the movement speed of the spray nozzle and each property was evaluated to decide the optimization condition. Through the results, the thickness of WC coating layer increased from 0 to 200 ㎛ maximum, along with the decrement of nozzle movement speed and the surface hardness get increased. Especially, the coated layer with the thickness over 180 ㎛ under the nozzle speed 500 mm/s had high hardness than thinner layer. In addition, the amount of wear consumed per unit time was also significantly reduced due to the formation of the coating layer.