• Title/Summary/Keyword: The spectral decomposition theorem

Search Result 6, Processing Time 0.017 seconds

SPECTRAL DECOMPOSITION FOR HOMEOMORPHISMS ON NON-METRIZABLE TOTALLY DISCONNECTED SPACES

  • Oh, Jumi
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.987-996
    • /
    • 2022
  • We introduce the notions of symbolic expansivity and symbolic shadowing for homeomorphisms on non-metrizable compact spaces which are generalizations of expansivity and shadowing, respectively, for metric spaces. The main result is to generalize the Smale's spectral decomposition theorem to symbolically expansive homeomorphisms with symbolic shadowing on non-metrizable compact Hausdorff totally disconnected spaces.

THE SPECTRAL DECOMPOSITION FOR FLOWS ON TVS-CONE METRIC SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.91-101
    • /
    • 2022
  • We study some properties of nonwandering set Ω(𝜙) and chain recurrent set CR(𝜙) for an expansive flow which has the POTP on a compact TVS-cone metric spaces. Moreover we shall prove a spectral decomposition theorem for an expansive flow which has the POTP on TVS-cone metric spaces.

SPECTRAL DECOMPOSITION OF k-TYPE NONWANDERING SETS FOR ℤ2-ACTIONS

  • Kim, Daejung;Lee, Seunghee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.387-400
    • /
    • 2014
  • We prove that the set of k-type nonwandering points of a Z2-action T can be decomposed into a disjoint union of closed and T-invariant sets $B_1,{\ldots},B_l$ such that $T|B_i$ is topologically k-type transitive for each $i=1,2,{\ldots},l$, if T is expansive and has the shadowing property.

Projection spectral analysis: A unified approach to PCA and ICA with incremental learning

  • Kang, Hoon;Lee, Hyun Su
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.634-642
    • /
    • 2018
  • Projection spectral analysis is investigated and refined in this paper, in order to unify principal component analysis and independent component analysis. Singular value decomposition and spectral theorems are applied to nonsymmetric correlation or covariance matrices with multiplicities or singularities, where projections and nilpotents are obtained. Therefore, the suggested approach not only utilizes a sum-product of orthogonal projection operators and real distinct eigenvalues for squared singular values, but also reduces the dimension of correlation or covariance if there are multiple zero eigenvalues. Moreover, incremental learning strategies of projection spectral analysis are also suggested to improve the performance.

EXPANDING MEASURES FOR HOMEOMORPHISMS WITH EVENTUALLY SHADOWING PROPERTY

  • Dong, Meihua;Lee, Keonhee;Nguyen, Ngocthach
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.935-955
    • /
    • 2020
  • In this paper we present a measurable version of the Smale's spectral decomposition theorem for homeomorphisms on compact metric spaces. More precisely, we prove that if a homeomorphism f on a compact metric space X is invariantly measure expanding on its chain recurrent set CR(f) and has the eventually shadowing property on CR(f), then f has the spectral decomposition. Moreover we show that f is invariantly measure expanding on X if and only if its restriction on CR(f) is invariantly measure expanding. Using this, we characterize the measure expanding diffeomorphisms on compact smooth manifolds via the notion of Ω-stability.

JORDAN AUTOMORPHIC GENERATORS OF EUCLIDEAN JORDAN ALGEBRAS

  • Kim, Jung-Hwa;Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.507-528
    • /
    • 2006
  • In this paper we show that the Koecher's Jordan automorphic generators of one variable on an irreducible symmetric cone are enough to determine the elements of scalar multiple of the Jordan identity on the attached simple Euclidean Jordan algebra. Its various geometric, Jordan and Lie theoretic interpretations associated to the Cartan-Hadamard metric and Cartan decomposition of the linear automorphisms group of a symmetric cone are given with validity on infinite-dimensional spin factors