• Title/Summary/Keyword: The present

Search Result 87,714, Processing Time 0.08 seconds

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park Young-Min;Chang Byeong-Hee
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.28-36
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using commercial CFD code, Fluent. For the numerical analysis of wind turbine, the three dimensional Navier-Stokes solver with various turbulence models was tested. As a turbulence mode, the realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with its wind tunnel test and blind test data. Using the present method, numerical simulations for various size of wind tunnel models were carried out and characteristics were analyzed in detail. For wind tunnel test model, the size of nacelle may not be scaled down precisely because of available motor. The effect of nacelle size was also computed and analyzed though CFD simulation. The present results showed the good correlations in pre-stall region but much to be improved in post-stall region. In 2006 and 2007, the performance and the scale effect of standard wind turbine model will be tested in KARI(Korea Aerospace Research Institute) LSWT(Low Speed Wind Tunnel) and the present results will be validated with the wind tunnel data.

  • PDF

The Influence of Internal or Exterior Factors and Utilization of Export Assistance Programs on Export Performance - with reference to Korean Small-Medium Exporters - (기업내.외부 환경요인과 수출지원정책 활용도가 수출성과에 미치는 영향 - 중소수출기업을 중심으로 -)

  • Kim, Young-Il
    • International Commerce and Information Review
    • /
    • v.12 no.1
    • /
    • pp.299-325
    • /
    • 2010
  • The purpose of this empirical study is an index to usage of export assistance programs for korean small-medium exporters. Build around the index make an analysis of SMEs internal or exterior factors have an effect on export at present or in future export performance and the relative importance. Based on 128 surveys form korean SMEs experienced export assistance programs, 8 hypotheses, which are set up each factor, were verified through the practical analysis. The main result of hypothesis drawn by empirical study are as follows : The more SMEs use the programs, the more high export performance at present and in future. Export competitive factor reject at present export performance, but it will affect future export performance. A size of the firm in the characteristics of SEMs will affect export performance. Export rate of own brand will not affect performance. Another factors show adoption partly concerned hypothesis. Classified exterior factors of SMEs, a intensity of market competition shows adoption partly concerned hypothesis. Market growth rate will affect export performance at present and future strongly. Finally the usage of assistance programs will affect between a consumption goods and an industrial goods differently. From this study we found if we want to develop the export assistance programs that can actually in phases help the SEMs.

  • PDF

A New Model for Accurate Nonlinear Analysis of Prestressed Concrete Members under Torsion (비틀림을 받는 프리스트레스트 콘크리트 부재의 새로운 비선형 해석 모델)

  • 오병환;박창규
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.159-168
    • /
    • 1994
  • The present study proposes a realistic method to analyze the prestressed concrete members subjected to torsion. For this end, this study devises a method to realistically take into account the tensile stiffness of concrete after cracking. The effects of biaxial compressive and tensile loadings on the compressive and tensile strengths of concrete are also taken into account in the present model. The comparison of the present theory with experimental data indicates that the proposed model dipicts reasonably well the actual behavior of prestressed concrete members subjected to torsion. The present model can predict not only the service load behavior, but also up to the behavior of ultimate load stages.

Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model

  • Semmah, Abdelwahed;Beg, O. Anwar;Mahmoud, S.R.;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2014
  • In the present article, the thermal buckling of zigzag single-walled carbon nanotubes (SWCNTs) is studied using a nonlocal refined shear deformation beam theory and Von-Karman geometric nonlinearity. The model developed simulates both small scale effects and higher-order variation of transverse shear strain through the depth of the nanobeam. Furthermore the present formulation also accommodates stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. The equivalent Young's modulus and shear modulus for zigzag SWCNTs are derived using an energy-equivalent model. The present study illustrates that the thermal buckling properties of SWCNTs are strongly dependent on the scale effect and additionally on the chirality of zigzag carbon nanotube. Some illustrative examples are also presented to verify the present formulation and solutions. Good agreement is observed.

Design and Vibratory Loads Reduction Analysis of Advanced Active Twist Rotor Blades Incorporating Single Crystal Piezoelectric Fiber Composites

  • Park, Jae-Sang;Shin, Sang-Joon;Kim, Deog-Kwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.18-33
    • /
    • 2008
  • This paper presents design optimization of a new Active Twist Rotor (ATR) blade and conducts its aeroelastic analysis in forward flight condition. In order to improve a twist actuation performance, the present ATR blade utilizes a single crystal piezoelectric fiber composite actuator and the blade cross-sectional layout is designed through an optimization procedure. The single crystal piezoelectric fiber composite actuator has excellent piezoelectric strain performance when compared with the previous piezoelectric fiber composites such as Active Fiber Composites (AFC) and Macro Fiber Composites (MFC). Further design optimization gives a cross-sectional layout that maximizes the static twist actuation while satisfying various blade design requirements. After the design optimization is completed successfully, an aeroelastic analysis of the present ATR blade in forward flight is conducted to confirm the efficiency in reducing the vibratory loads at both fixed- and rotating-systems. Numerical simulation shows that the present ATR blade utilizing single crystal piezoelectric fiber composites may reduce the vibratory loads significantly even with much lower input-voltage when compared with that used in the previous ATR blade. However, for an application of the present single crystal piezoelectric actuator to a full scaled rotor blade, several issues exist. Difficulty of manufacturing in a large size and severe brittleness in its material characteristics will need to be examined.

The Result of Space Experts Training through Cube Satellite Development Program (큐브위성 개발프로그램을 통한 우주전문 인력양성 성과)

  • Cha, Jinyeong;Oh, Hyunong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • The CubeSat, which was first launched to verify new technologies and for educational purposes, is now widely used as an educational tool since it makes possible development of manpower through practical training to produce the satellite at low development costs. At present, research and development on the CubSat is rapidly expanding in domestic and foreign universities. As one of the final 3 teams selected in the 2013 CUBE SATELLITE CONTEST organized by the Ministry of Science, ICT and Future Planning, Chosun University is also currently conducting R & D of STEP Cube Lab, which is a CubeSat scheduled to be launched in 2015 and whose main task is to verify space-based technologies in orbit. The present paper tries to present an overview of the CubeSat of Chosun University whose development is being led by its undergraduate students, and further, introduce the strengths of the present development program for developing space experts, based on the educational achievements from the R & D.

Evaluation of Plugging Criteria on Steam Generator Tubes and Coalescence Model of Collinear Axial Through-Wall Cracks

  • Lee, Jin-Ho;Park, Youn-Won;Song, Myung-Ho;Kim, Young-Jin;Moon, Seong-In
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.465-476
    • /
    • 2000
  • In a nuclear power plant, steam generator tubes cover a major portion of the primary pressure-retaining boundary. Thus very conservative approaches have been taken in the light of steam generator tube integrity According to the present criteria, tubes wall-thinned in excess of 40% should be plugged whatever causes are. However, many analytical and experimental results have shown that no safety problems exist even with thickness reductions greater than 40%. The present criterion was developed about twenty years ago when wear and pitting were dominant causes for steam generator tube degradation. And it is based on tubes with single cracks regardless of the fact that the appearance of multiple cracks is more common in general. The objective of this study is to review the conservatism of the present plugging criteria of steam generator tubes and to propose a new coalescence model for two adjacent through-wall cracks existing in steam generator tubes. Using the existing failure models and experimental results, we reviewed the conservatism of the present plugging criteria. In order to verify the usefulness of the proposed new coalescence model, we performed finite element analysis and some parametric studies. Then, we developed a coalescence evaluation diagram.

  • PDF

Isolation of Aeromonas sobria from Cultured Mud Loach, Misgurnus mizolepis (양식 미꾸라지(Misgurnus mizolepis)로 부터 Aeromonas sobria 검출)

  • Yu, Jin-Ha;Park, Sung-Woo
    • Journal of fish pathology
    • /
    • v.21 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Mass mortality occurred in mud loaches, Misgurnus mizolepis, cultured in ponds located in Kunsan. External signs of affected fish showed hemorrhage of skin and fins, Internally, pale liver with congestion, enlarged kidney, and spleen and enteritis exhibited. Causative bacteria isolated from liver, spleen, and kidney of the disease fish. In biochemical tests, the isolates were similar with those of the reference strains, A. sobria. The aerolysine gene from the present isolate was amplified PCR with the primer SOBF and SOBB for A. sobria. The isolate was identified as A. sobria on the basis of those tests. In virulence test, the present isolate resulted in the development of clinical signs identical to those in naturally infected fish. The present results conclude that the present isolate is A. sobria and can be a pathogen which causes motile aeromonad septicemia to mud loach.

Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders (축대칭 실린더형상 주위 부분공동 유동의 전산해석)

  • Kim, Bong-Su;Lee, Byung-Woo;Park, Warn-Gyu;Jung, Chul-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.

Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution

  • Mekerbi, Mohamed;Benyoucef, Samir;Mahmoudi, Abdelkader;Bourada, Fouad;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.513-524
    • /
    • 2019
  • The present article deals with thermal buckling of functionally graded plates with porosity and resting on elastic foundation. The basic formulation is based on quasi 3D theory. The present theory contains only four unknowns and also accommodates the thickness stretching effect. Porosity-dependent material coefficients of the plate are compositionally graded throughout the thickness according to a modified micromechanical model. Different patterns of porosity distributions are considered. The thermal loads are assumed to be uniform, linear and non-linear temperature rises through the thickness direction. The plate is assumed to be simply supported on all edges. Various numerical examples are given to check the accuracy and reliability of the present solution, in which both the present results and those reported in the literature are provided. In addition, several numerous new results for thick FG plates with porosity are also presented.